Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Способы задания множеств





Множество — это совокупность объектов или явлений, объединенных по какому-нибудь общему для них признаку. Множество состоит из элементов. Множество считается заданным, если о каждом элементе можно однозначно сделать вывод о том, входит или не входит этот элемент в рассматриваемое множество.

Если количество элементов множества может быть выражено некоторым натуральным числом или нулем, то имеем конечное множество. Количество элементов в конечном множестве обозначается . Пустое множество считается конечным и .

Если количество элементов множества не может быть выражено натуральным числом или нулем, то имеем бесконечное множество.

Если элементами множества являются числа, то имеем числовое множество.

Основные способы описания множества

1) — множество состоит из элементов a;

2) — множество задано списком своих элементов;

3) — множество задано характеристическим свойством своих элементов.

Примеры (задание множеств)

¥ = {1, 2, 3, 4, 5, ¼} – множество натуральных чисел;
– множество корней уравнения ;
– множество решений неравенства ;

– множество треугольников с вершинами в точках А, В, С;

– множество исходов, связанных с некоторым экспериментом.

 

Если множества состоят из одних и тех же элементов, то они называются равными множествами.

Например, 1) ;

2) .







Дата добавления: 2015-10-19; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия