Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТОК СМЕЩЕНИЯ. ВТОРОЕ УРАВНЕНИЕ МАКСВЕЛЛА





Если электромагнитное поле стационарно, то ротор вектора в каждой точке поля равен плотности тока проводимости:

. (5.3)

Вектор связан с плотностью заряда в той же точке уравнением непрерывности:

. (5.4)

При этом дивергенция равна нулю, т.к. распределение зарядов не зависит от времени. Поэтому линии тока (линии вектора ) не имеют источников и всегда замкнутые.

Рассмотрим теперь изменяющееся во времени поле. Пусть магнитное поле создается током, текущим при зарядке конденсатора от источника постоянного напряжение U (рис.5.1). Этот ток меняется во времени и при напряжении на конденсатора, равном U, прекращается. Линии тока проводимости терпят разрыв в промежутке между обкладками конденсатора.

Проведем круговой контур Г, охватывающий провод, по которому течет ток к конденсатору (рис.5.1). Обозначим через поверхность, пересекающую провод и ограниченную контуром Г. Тогда по Закону полного тока

,

где - сила тока, заряжающего конденсатор.

Для поверхности , не пересекающей провод с током (рис.5. 1), имеем:

.

Этот результат является заведомо неверным, т.к. и поверхность и поверхность опираются на один и тот же контур (рис.5.1). Циркуляция вектора по контуру в обоих случаях должна быть одна и та же.

Таким образом, в случае изменяющихся во времени полей уравнение (5.3) несправедливо. Поэтому можно сказать, что в уравнении (5.3) не хватает одного слагаемого, которое зависит от производных полей по времени. Для стационарных полей это слагаемое равно нулю.

Для согласования уравнений (5.3) и (5.4) Максвелл ввел слагаемое, которое имеет размерность плотности тока, и назвал его плотностью тока смещения. С учетом этого слагаемого для ротора вектора имеем:

.

Сумма плотности тока проводимости и плотности тока смещения называется плотностью полного тока:

.

Можно показать, что дивергенция тока смещения равна:

. (5.5)

По теореме Гаусса , продифференцировав это выражение по времени, имеем:

,

поменяем местами порядок дифференцирования по времени и координатам, получаем:

. (5.6)

Подставим (5.6) в формулу (5.5): , и .

Тогда для ротора вектора имеем:

. (5.7)

Это второе уравнение Максвелла. Из него следует, что меняющееся во времени электрическое поле порождает магнитное поле .

Термин «ток смещения» является чисто условным. Это изменяющееся во времени электрическое поле. Ток смещения обладает только одним физическим свойством – способностью создавать магнитное поле. Токи смещения не сопровождаются выделением ленц-джоулева тепла.

Ток смещения есть везде, где есть меняющееся во времени электрическое поле. Внутри проводов, по которым течет переменный электрический ток, ток смещения также существует, но он пренебрежительно мал по сравнению с током проводимости. Учет токов смещения приводит к тому, что цепи непостоянных токов становятся замкнутыми, токи смещения проходят в тех участках, где нет проводников, например, между обкладками плоского конденсатора.

Известно, что , где – вектор поляризации. Тогда плотность тока смещения в диэлектрике

.

В этом выражении определяет плотность тока смещения в вакууме, называется плотностью тока поляризации. Он представляет собой плотность тока, обусловленного упорядоченным перемещением связанных зарядов в диэлектрике при изменении его поляризации. Это смещение зарядов в молекулах неполярного диэлектрика или поворот молекул – диполей в полярных диэлектриках.

Ток смещения сквозь произвольную поверхность S, очевидно, равен потоку вектора плотности тока смещения через эту поверхность:

.

В интегральной форме второе уравнение Максвелла имеет вид:

,

- циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру Г равна алгебраической сумме макротоков и токов смещения сквозь поверхность, натянутую на этот контур.

Таким образом, электрическое и магнитное поля неразрывно связаны и могут взаимно порождать друг друга. Они образуют единое электромагнитное поле.

 







Дата добавления: 2015-10-19; просмотров: 792. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия