ПОЛНАЯ СИСТЕМА УРАВНЕНИЙ МАКСВЕЛЛА ЭЛЕКТРОМАГНИТНОГО ПОЛЯ
Основу теории Максвелла составляют четыре уравнения, которые в электродинамике играют такую же роль, как законы Ньютона в механике. Система этих уравнений описывает электромагнитное поле и может быть записана для векторов и ; и , и ; и . Для векторов и уравнения Максвелла имеют вид: ; ; ; . (5.8) Для векторов и : ; ; ; . Если электрическое и магнитное поля стационарны, т.е. и , то из уравнений Максвелла следует, что эти поля существуют независимо друг от друга: ; - это уравнения электростатики; ; - уравнения магнитостатики. Систему уравнений Максвелла (5.8) необходимо дополнить еще материальными уравнениями, которые характеризуют электрические и магнитные свойства среды. Если среда изотопная, несегнетоэлектрическая и неферромагнитная, и макротоки подчиняются закону Ома, то эти уравнения имеют вид: ; ; (5.9) На границе раздела сред должны выполняться граничные условия для векторов, характеризующих электромагнитное поле: ; ,; , (5.10)
где – поверхностная плотность зарядов; – единичный вектор нормали к поверхности раздела сред, проведенный из среды 2 в среду 1; - единичный вектор касательной к поверхности раздела сред, - единичный вектор касательной к поверхности раздела сред и перпендикулярный к ; – вектор линейной плотности поверхностного тока проводимости, он направлен вдоль поверхности по направлению тока в ней и численно равен , где - ток проводимости через малый участок dS сечения поверхности, проведенного перпендикулярно к направлению поверхностного тока. Главный смысл уравнений (5.8) заключается в том, что они содержат уравнения движения электромагнитного поля. Это означает, что в каждом случае поля и могут быть найдены путем решения уравнений (5.8). Каждое решение выделяется с помощью начальных и граничных условий (5.10). Начальные условия определяют поля в некоторый фиксированный момент времени, который обычно принимается за нулевой. Задания полей в один из моментов времени достаточно для определения постоянных интегрирования уравнений (5.8), по времени, т.к. в (5.8) входят только первые производные по времени. Граничные условия выражают свойства, связанные с наличием поверхностей раздела, т.е. таких поверхностей, по разные стороны которых свойства системы различны, а также с ограничениями области существования поля какими-либо поверхностями. Граничные условия задают поля в любой момент времени на поверхностях такого рода. Если область существования поля очень велика, то условия на удаленных внешних границах трансформируются в задание полей в бесконечно удаленных точках, т.е. на бесконечности. Поскольку электромагнитные взаимодействия осуществляются через электромагнитные поля, то тем самым оказывается, что электрический заряд является константой связи электрически заряженных частиц с электромагнитным полем. Поэтому электромагнитные поля возникают вокруг зарядов и токов, от которых и распространяются в окружающее пространство; электромагнитные поля действуют на заряды и токи. Состояние электромагнитного поля полностью характеризуется двумя векторными функциями координат и времени. Эти векторные функции и называются электрическим и магнитным полем. Множество значений, которые независимые компоненты векторов и (четыре из шести) принимают во всех точках пространства в данный момент времени, задают состояние электромагнитного поля в этот момент. Электромагнитное поле отличается от любой системы частиц тем, что оно является физической системой с бесконечно большим числом степеней свободы (в области существования поля значения независимых компонент и составляют бесчисленное множество величин, т.к. любая область пространства содержит бесконечно большое число точек). Электромагнитные поля подчинятся принципу суперпозиции: при одновременном действии нескольких источников электромагнитного поля (имеется несколько заряженных электричеством тел в свободном, т.е. не содержащем вещества, пространстве) образуется поле, равное сумме полей, создаваемых каждым источником: ; . Уравнения Максвелла инвариантны относительно преобразований Лоренца. Электрические заряды также не зависят от выбора инерциальной системы отсчета. Формула преобразований Лоренца для векторов и электромагнитного поля при переходе от неподвижной инерциальной системы отсчета К к системе , движущейся относительно К прямолинейно и равномерно со скоростью вдоль положительного направления ОХ, имеют вид: ; ; ;
; ; ;
с учетом (5.9) получаем для векторов и : ; ; ; ; ; . Здесь - скорость света в вакууме. В среде . Из преобразований Лоренца видно, что одно и то же электромагнитное поле по-разному проявляется в инерциальных системах отсчета, движущихся друг относительно друга. Например, если в системе отсчета К есть только электрическое поле, ( - орт координатной оси) и , то в системе отсчета будет наблюдаться и электрическое и магнитное поле, векторы и взаимно перпендикулярны: ; ; ; ; ; .
Если же в есть магнитное поле, то в также будут наблюдаться оба поля, у которых : ; ; ; ; ; .
5.6. УРАВНЕНИЯ МАКСВЕЛЛА– ЛОРЕНЦА Не все уравнения Максвелла есть уравнения движения поля. Действительно, только два из четырех уравнений (5.8) содержат производные по времени, т.е. определяют, как поле изменяется во времени. В третьем и четвертом уравнениях таких производных нет, т.е. эти уравнения являются только условиями, накладываемыми на и . Эти условия связывают компоненты полей при любых изменениях их во времени. А так как этих условиях два, то из шести компонент полей и только четыре независимы. Поля и проявляются в действии на электрические заряды. Действие их на точечный заряд определяется силой Лоренца:
, (5.11) где q – заряд частицы, – скорость ее движения. Выражение для силы Лоренца является фундаментальным законом физики электромагнитных явлений. Оно определяет действие электромагнитного поля на заряженные частицы. Уравнения Максвелла (5.8) совместно с уравнениями движения для заряженных частиц под действием силы Лоренца (5.11) составляют фундаментальную систему уравнений Максвелла-Лоренца. Эта система уравнений в принципе достаточна для описания всех электромагнитных явлений, в которых не проявляются квантовые закономерности (т.е. в классической электродинамике). Для того, чтобы система уравнений Максвелла-Лоренца имела единственное решение, т.е. давала однозначное предсказание хода рассматриваемого электромагнитного процесса, необходимо задание начального состояния частиц и полей (т.е. координат и скоростей частиц, а также полей и при ), и граничных условий для полей и . Конкретный вид начальных и граничных условий зависит от свойств уравнений Максвелла. Вот эти свойства: 1) Уравнения Максвелла линейны. Они содержат только первые производные полей по времени и пространственным координатам и первые степени плотности заряда и тока. Свойство линейности прямо связано с принципом суперпозиции. 2) Уравнения Максвелла содержат закон сохранения электрического заряда. Действительно, продифференцируем третье уравнение (5.8) по времени, будем рассматривать процесс в вакууме (), имеем: , или . (5.12) Теперь возьмем дивергенцию от обеих частей второго уравнения (5.8) здесь Известно, что дивергенция от ротора равна нулю: , тогда . Домножим это выражение на , получаем: , или, учитывая (5.12) имеем: - это и есть закон сохранения заряда. Если в него подставить значение из уравнения непрерывности (), то получим тождество: . 3) Из уравнений Максвелла следует, что каждое электромагнитное поле должно иметь скалярный и векторный потенциал.
|