Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

А) размах вариации





,

где хmax и xmin соответственно значения наибольшей и наименьшей варианты признака в данной совокупности.

б) среднее линейное отклонение – средняя арифметическая из абсолютных значений отклонений отдельных вариантов xi от их средней х:

(простая)

(взвешенная)

в) дисперсия - средняя арифметическая из квадратов отклонений отдельных вариантов от среднего значения признака:

(простая)

(взвешенная)

В отличие от математики, статистика оперирует не абстрактными, а смысловыми величинами, имеющими размерность. Поэтому и дисперсия здесь не безразмерная, как в математике, а сопровождается квадратической размерностью. Например, если статистическая величина измеряется в годах, или рублях, то дисперсия отклонений получится в «квадратных» годах или в «квадратных» рублях. Для получения обычной размерности находится среднее квадратическое отклонение (σ).

г) среднее квадратическое отклонение - корень квадратный из дисперсии

(простая)

(взвешенная)

Однако значения средних отклонений, как любой абсолютной величины, служат лишь количественной мерой анализа статистической совокупности. Для качественного анализа применяются относительные критерии, называемые коэффициентами вариации. Рассмотрим основные относительные величины, используемые при анализе вариации:

Линейный коэффициент вариации - отношение среднего линейного отклонения к средней величине:

Квадратический коэффициент вариации - отношение среднего квадратического отклонения к средней величине:

С помощью линейного коэффициента вариации принципиальный вывод о типичности или нетипичности средней величины можно получить проще и быстрее, чем с помощью квадратического. Однако квадратический коэффициент применяется чаще, так как существует несколько способов для вычисления дисперсии. Если он не превышает 33 %, то совокупность по рассматриваемому признаку можно считать однородной.

Коэффициент осцилляции – отношение размаха вариации к средней величине

3. Изучение степени неравномерности распределения суммарного показателя. Степень неравномерности распределения определенного суммарного показателя между отдельными группами вариационного ряда наглядно показывают кривая Лоренца и рассчитанный на её основе коэффициент Джини. Кривая Лоренцаиспользуется для изображения уровня концентрации явления. Для ее построения на обе оси координат наносят процентную масштабную шкалу (от 0 до 100 %). При этом распределение единиц совокупности и распределение суммарного показателя должны быть представлены в относительных показателях, и для обоих распределений рассчитываются накопленные (кумулятивные) итоги. Для точек кривой абсциссами служат кумулятивные итоги единиц совокупности (например, доля городов в общем их количестве с численностью населения до определенного значения), а ординатами — значения признака (например, кумулятивный итог численности городского населения). Равномерное распределение признака будет представлено в таком случае диагональю, называемой «линией равномерного распределения», а неравномерное — «линией Лоренца», отклонение которой от диагонали и характеризует степень неравномерности. Чем больше фактическое распределение двух показателей отклоняется от равномерного, тем больше кривая Лоренца удалена от диагонали. Несколько кривых Лоренца, построенных на одном квадрате, используют для сравнения уровня концентрации изучаемого показателя во времени и в пространстве (по разным территориям).

При количественной оценке степени концентрации часто используют коэффициент Джини (G):

,

где wi– доля единиц совокупности (частость), qiи qi+1– доля суммарного показателя i-ой и последующей группы.

Чем ближе значение коэффициента Джини к единице, тем больше степень концентрации изучаемого суммарного показателя в отдельных группах единиц совокупности (степень неравномерности распределения).

 







Дата добавления: 2015-10-19; просмотров: 738. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.188 сек.) русская версия | украинская версия