Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание И1. Основное уравнения динамики относительного движения точки. Теорема о движении центра масс системы.





1.

P
Рис.2
ω  
𝛽𝛽
y
x
О
ω
m
α
L
Фе
Фс
h
Ne
Составляем уравнение динамики относительного движения точки

(1.1)

Вращательная переносная сила инерции отсутствует, поскольку тело вращается равномерно. Центробежная сила инерции всегда направлена от оси вращения тела. Ее модуль равен

Сила Кориолиса в проекциях на оси координат:

Отличны от нуля только проекции

Поэтому имеет проекцию только на ось у

Проектируя уравнение (1.1) на ось х, получаем дифференциальное уравнение относительного движения точки

2. Положение относительного равновесия находится в точке, где ускорение равно нулю. Это точка Р с координатой

Очевидно, что при и точка будет удаляться от начала О координаты . При и точка будет приближаться к началу О координаты х. При заданных начальных условиях точка движется в направлении оси х.

3. Найдем закон относительного движения и скорости точки. Это обратная задача динамики. Решение неоднородного уравнения (1.2) ищем в виде суммы общего решения однородного уравнения и частного решения уравнения (1.2)

Общее решение однородного уравнения

ищем в виде

Подставляя это решение в однородное уравнение, приходим к характеристическому уравнению с вещественными корнями

Решение принимает вид

Частное решение ищем в виде правой части, т.е. постоянной . Подставив в уравнение (1.2), получим

Полное решение уравнения (1.2)

(1.3)

Просьба ставить при положительной степени е (!)

Постоянные в (1.3) находим из начальных условий

(1.4)

Подставив (1.4) в (1.3), получим:

Иначе

Решение приобретает вид

С учетом начальных условий (1.4)

(1.5)

4. Найдем скорость точки в момент, когда она покидает тело. Можно было бы и закона движения определить соответствующий момент времени и подставить его в закон изменения скорости. Но лучше найти зависимость скорости точки от ее перемещения с помощью замены переменных

которая фактически приводит к теореме об изменении кинетической энергии точки.

Получаем

Интегрируя, находим зависимость относительной скорости точки от ее перемещения

(1.6)

Из начальных условий (1.4) находим

Находим скорость при

 

5. Найдем закон изменения реакции тела на точку. Это прямая задача динамики. Проекция уравнения (1.1) на ось z:

дает проекцию реакции стержня на ось z

Проектируя уравнение (1.1) на ось у, находим:

Теперь проекция нормальной реакции стержня на ось у равна

зависит от найденной относительной скорости точки (1.5).

В момент, когда точка покидает тело при

(1.9)

 

6. Составляющие реакции шарнира R найдем по известным ускорениям тела и точки из теоремы о движении центра масс

Рис.3
ω  
О
 
α
L
h
L
L
Это прямая задача динамики.

где составляющие от ускорений центров тяжести стержней, а от ускорения точки. Последнее состоит из относительного, переносного и Кориолисова ускорений:

Направления составляющих изобразим на рисунке и вычислим их модуль

;







Дата добавления: 2015-10-19; просмотров: 354. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия