Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Анализ сезонности. Коррелограмма





В общем виде периодическая зависимость может быть формально определена как корреляционная зависимость между каждым i-м и (i-n)-м элементом ряда, при этом n называют лагом (сдвигом, запаздыванием).

Данную зависимость оценивает автокорреляционная функция АСF (Autocorrelation function), вычисляемая как последовательность корреляций между рядом и им же, сдвинутым на 1,2,…,n,… временных точек, лагов. АСF представляет собой коэффициенты автокорреляции, формула (5), для последовательности лагов из определенного диапазона, т.е. зависимость между разнесёнными по времени наблюдениями.

 

, (5)

 

где М- математическое ожидание;

- среднеквадратическое отклонение ;

- среднее значение ;

t и s – различные моменты времени, где t-s= n, (n – лаг);

– уровень временного ряда в момент времени t;

- автокорреляционная функция временного ряда (t и s – переменные).

Т.о. коэффициент автокорреляции при лаге 1 есть коэффициент корреляции между yt и yt-1. Если ряд стационарен, то данный коэффициент равняется коэффициенту корреляции между yt и yt-2; yt и yt-3 и т.д.

Сезонные составляющие временного ряда могут быть найдены с помощью коррелограммы, которая представляет собой график зависимости значений автокорреляционной (АСF) или частной автокорреляционной (PАСF) функции от величины лага n (порядка коэффициента автокорреляции).

Однако, если коррелированны yt и yt-1, а также yt-1 и yt-2, то и yt и yt-2 также коррелированны, т.е. корреляция при лаге 1 "вызывает" корреляцию при лаге 2, а, соответственно, и при больших лагах. Поэтому для исследования периодичности и получения более «чистой» картины периодических зависимостей используется PACF (Partial autocorrelation function), которая представляет собой «чистую» зависимость между наблюдениями. Частная автокорреляция на данном лаге аналогична обычной автокорреляции, за исключением того, что при вычислении из нее удаляется влияние автокорреляций с меньшими лагами, например PACF при лаге 3 равняется корреляции рядов yt и yt-3, причем считается исключенной их корреляция с рядами yt-1 и yt-2.

Т.о. PACF позволяет оценить порядок запаздывания процесса n для модели авторегрессии AR(n), которая будет рассмотрена ниже.

 

 







Дата добавления: 2015-10-19; просмотров: 696. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия