Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Спектральный (Фурье) анализ





Цель спектрального анализа - разложить комплексные стационарные временные ряды с циклическими компонентами на несколько основных синусоидальных функций с определенной длиной волн, появление которых особенно существенно и значимо, формула (7). В результате анализа можно обнаружить всего несколько основных периодических компонент (функций синусов или косинусов) в изучаемом временном ряду, который, на первый взгляд, выглядит как случайный шум, что позволит изучить интересующее явление.

, (7)

где а0 – константа;

аi, bi – амплитуды соответствующих функций, коэффициенты регрессии, которые показывают степень, с которой соответствующие функции синусов и косинусов коррелируют с фактическими данными;

- круговая частота соответствующей функции, радиан.

fi - частота Фурье или угловая частота, обратная периоду.

i- номер соответствующих гармоник (косинуса и синуса) с определённым значением частоты;

N- число наблюдений;

q- для нечётного числа наблюдений q=(N-1)/2 - число различных синусов и косинусов, для чётного q=N/2 исуществует q значений косинусов и q-1 значений синусов.

Для нахождения частот основных периодических составляющих (синусов и косинусов) временного ряда вычисляется периодограмма, формула (8), путём суммирования квадратов коэффициентов аi и bi для каждой частоты и умножения на N/2. Значения периодограммы на графике изображаются в зависимости от частот или периодов.

(8)

где I(fi) значение периодограммы на частоте fi;

N - общая длина ряда.

Сглаженная периодограмма, состоящая из усреднённых методом взвешенного или простого скользящего среднего значений периодограммы, представляет собой функцию спектральной плотности и используется для тех же целей. Одним из методов взвешенного скользящего среднего является метод Бартлетта (Bartlett). В интервале сглаживания, для каждой частоты, веса для взвешенного скользящего среднего значений периодограммы вычисляются как: wi = 1-(i/p) (для i = 0 до p); w-i = wi (для i 0); p = (g-1)/2), где g- длина интервала сглаживания.







Дата добавления: 2015-10-19; просмотров: 683. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия