Студопедия — Строение глаза
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Строение глаза






Глаз имеет почти круглую форму, в его стенке можно выделить 3 слоя, которые называются опорный, средний и сетчатый (рис.1). Опорный слой представлен плотной соединительной тканью, почти во всем глазу она называется склерой. Опорный слой полностью покрывает глаз, за исключением пронизывающих его кровеносных сосудов и отверстия сзади, через которое из глазного яблока выходит зрительный нерв.

Склера
Роговица
Сосудистая оболочка
Сетчатка
Хрусталик
Радужка
Цилиарное тело
Зрительный нерв
Желтое пятно
Зрачок
Стекловидное тело
Стекловидное тело

Рис. 1. Строение глаза.

Глаз сложно устроен и состоит из отдельных тканевых структур, каждая из которых выполняет свою функцию. При поврежедении определенной ткани глаза возникает соответствующая патология. Рассмотрим некоторые заболевания глаза у человека и применение в этих случаях различных бальзамов «Виофтаны».

Склера образована из белой, плотной, эластичной соединительной ткани. Основной клеточной популяцией склеры являются фибробласты. В склере присутствует до 68% воды. Во внеклеточном матриксе склеры содержатся коллагены различных типов (I, III, V, VI), эластин, ламинин, ростовые факторы (FGF2, TGFb1), гиалуронаны, протеогликаны, металлопротеазы и их регуляторы. Склера достаточно прочна, чтобы выдержать, не растягиваясь, внутриглазное давление, она играет важную роль в защите внутренних тканей глаза от механического повреждения и в поддержании постоянной формы глаза для правильного фокусирования объектов на сетчатке. Склера участвует в процессах аккомодации, обеспечивая стабильную основу для сокращения цилиарной мышцы, а также в сокращении внешних глазных мышц, обеспечивающих движение глаз. Через склеру проходят сосуды и нервы, снабжающие внутриглазные структуры.

Роговица образует переднюю стенку глазного яблока. Она представляет собой слегка выпуклую и прозрачную область, покрывающую центральный участок переднего отдела глаза. Роговица выполняет защитную, светопроводящую и светопреломляющую функции. В роговице выделяют три основных слоя – эпителий, строму и эндотелий. На границе эпителия и стромы находится боуменова мембрана, состоящая из пространственно неупорядоченных коллагеновых волокон, а на границе стромы и эндотелия – десцеметова мембрана. Эпителий роговицы имеет эктодермальное происхождение и состоит из 3 слоев – базального, супрабазального и чешуйчатого. Клетки базального слоя расположены на поверхности базальной мембраны. За счет пролиферативной активности клеток внутренних слоев (базального и супрабазального) обеспечивается увеличение числа клеток наружного чешуйчатого слоя, в которых осуществляется синтез специфических белков - кератинов, образующих гетеродимеры. Стромаимеет мезенхимное происхождение и составляет наиболее значительную часть роговицы. Основная масса клеточных элементов стромы представляет собой уплощенные фибробласты (кератоциты), которые синтезируют коллаген, накапливающийся в виде пластинчатых структур - ламелл, а также секретируют компоненты межклеточного матрикса. Плотность кератоцитов в центре роговицы существенно ниже, чем на периферии. Среди данной популяции клеток выделяют фибробласты веретеновидной формы - миофибробласты, которые локализованы в субэпителиальном слое стромы, в том числе, в центральной ее части. Количество миофибробластов значительно увеличивается при ранозаживлении травмированной роговицы, предполагается, что они участвуют в процессе стягивания краев раны.

Наряду с фибробластами, в строме роговицы присутствуют лейкоциты, часть которых постоянно присутствует в строме. Их называют резидентными лейкоцитами (дендроцитами, клетками Лангерганса) и относят к системе моноцитов/макрофагов, при воспалении к ним добавляются мигрирующие лейкоциты. Макрофаги, мигрирующие в роговицу при воспалении, главным образом играют роль эффекторных клеток при развитии клеточного иммунного ответа, а также участвуют в процессах тканевой реорганизации. В срединной части стромы роговицы обнаружены коллагены I, V, VI, XII, XIII и XIV типов, причем наиболее представлены I и V типы, входящие в состав ламелл, образованных кератоцитами. Коллагеновые волокна в них располагаются параллельно поверхности роговицы. Следует особо отметить аваскулярность стромы. Отсутствие полостей в строме является непременным условием ее оптической однородности, приводящей к одинаковому преломлению светового потока в разных ее частях. В связи с аваскулярностью стромы, транспорт питательных веществ в роговице осуществляется, в основном, через ее эндотелиальный, а также эпителиальный слои. Важную роль в осуществлении трофической функции клеток роговицы играет также аксональный транспорт в аксонах нейронов, подходящих к роговице. По этому механизму осуществляется перемещение белков, полипептидов, фосфолипидов, медиаторов и их предшественников, а также происходит удаление из клетки метаболитов.

Боуменова и десцеметова мембраны, соответственно, отделяющие строму, от эпителия и эндотелия, характеризуются рядом отличий от срединной части стромы. Так, фибробласты, расположенные в боуменовой мембране, имеют нитевидную форму, в отличие от округлых уплощенных кератоцитов стромы. Различия наблюдаются также в структуре межклеточного матрикса: в боуменовой мембране присутствуют коллагены VII и XVIII типов, а в десцеметовой – коллаген VIII, отсутствующие в других слоях стромы; дополнительной особенностью боуменовой мембраны является то, что коллагеновые волокна, входящие в ее состав, не образуют упорядоченной ламеллярной структуры. Эндотелий роговицы представлен одним слоем плоских гексагональных или, реже, полигональных клеток нейроэктодермального происхождения, расположенных на внутренней поверхности роговицы. Внутренняя поверхность эндотелиальных клеток граничит с водянистой влагой, заполняющей переднюю камеру глаза. Эндотелиоциты человека имеют толщину 4-6 мкм и диаметр около 20 мкм. Боковые стороны этих клеток имеют зубчатые очертания, показано наличие микроворсинок на их апикальной поверхности. На апикальной стороне эндотелиоцита расположен круговой поясок актиновых филаментов, которые участвуют в клеточной адгезии и миграции. Межклеточные контакты эндотелиоцитов представлены щелевыми и плотными контактами. Клетки эндотелия синтезируют компоненты десцеметовой мембраны. Все слои роговицы характеризуются высокой степенью интеграции и взаимодействием клеток и межклеточного матрикса, что обеспечивает корректное проведение и преломление светового потока.

Средний слой глазной стенки называют часто увеальным (от лат. uva-виноград). Он похож на кожицу темного винограда тем, что пигментирован и окружает желеобразное содержимое глаза. В двух задних третях глаза этот слой состоит только из тонкой оболочки, она называется сосудистой оболочкой. Ближе к передней части глаза средний слой утолщается и образует цилиарное тело. Средний слой продолжается вперед и составляет радужную оболочку.

Цилиарное тело – средняя утолщенная часть сосудистого тракта, расположенная между радужкой и хороидеей. Около 75 мелких складок вдаются из цилиарного тела в заднюю камеру глаза – это цилиарные отростки. Выделяют наружный мышечный слой, снабженный многочисленными сосудами, и внутренний нейроэктодермальный слой, который переходит в сетчатку ближе к центральной области глаза. Цилиарное тело обеспечивает аккомодацию хрусталика за счет воздействия на него через Цинновы связки. Кроме того, основной функцией данного органа является продукция и регуляция тока внутриглазной жидкости.

Радужка – пигментированная часть глаза, которую можно видеть сквозь роговицу. Она определяет цвет глаз. Пигмент в изобилии содержится во всех частях среднего слоя; это способствует светонепроницаемости стенки глаза и снижает отражение. В среднем слое проходят кровеносные сосуды, а его передняя часть содержит гладкую мышцу. Гладкая мышца радужки регулирует диаметр отверстия глаза – его зрачка. Гладкая мышца ресничного тела меняет напряжение ресничного пояска - Цинновой связки хрусталика, ее сокращение не тянет волокна, на которых подвешен хрусталик, а ослабляет их напряжение. Так глаз аккомодирует свой фокус на ближние предметы.

Хрусталик взрослого человека представляет собой двояковыпуклую линзу, у которой поверхности неодинаково сферичны: задняя - более выпуклая, чем передняя. Радиус кривизны передней поверхности хрусталика – 10 мм, задней – 6 мм. Фокусное расстояние линзы равно 51,34 мм, что позволяет приравнять хрусталик двояковыпуклому стеклу, силою в 19,5 диоптрий. Вес хрусталика в среднем составляет 0,22 г, его экваториальный диаметр приблизительно равен 10 мм, сагиттальный – 4,0–4,5 мм. Хрусталик состоит из прозрачных волокон, ограниченных капсулой. Капсула хрусталика представляет базальную мембрану, которая формируется эпителиальными клетками хрусталика. До сих пор у исследователей отсутствует единое представление о строении капсулы хрусталика. Например, существует мнение, что поверхностные слои капсулы структурно не организованы, в то время как расположенные более глубоко имеют слоистую структуру. Кроме того, предполагается существование в капсуле определенных каналов, по которым осуществляется транспорт веществ. Ранее выдвигалось предположение о том, что между волокнами хрусталика существуют пространства, заполненные аморфной массой, которые соединяются в единую сеть каналов, выполняющих дополнительную функцию в механизмах аккомодации хрусталика. Толщина капсулы хрусталика у позвоночных животных и человека характеризуется отсутствием равномерности: передний полюс имеет толщину 8-14 мкм, экватор 7-17 мкм, задний полюс 2-4 мкм. Это частично связано с поддерживающим аппаратом линзы, состоящим из цилиарных связок или ресничного пояска. На достаточно значительной площади базальной мембраны фибриллы ресничного пояска вплетаются на большую глубину (приблизительно 2 мкм) и распространяются по передней поверхности хрусталика до 1,5 мм от края экватора, а по задней поверхности - до 1,25 мм. Капсула выполняет барьерную функцию, обеспечивая избирательную проницаемость для различных факторов, причём отдельные ее участки по-разному осуществляют специфический транспорт веществ, обладая разной пропускной способностью. Это связано с различиями в толщине и составе отдельных участков капсулы. Подобно другим базальным мембранам капсула хрусталика богата коллагеном IV типа, но также содержит коллагены I, III и V типов. Кроме того, в ней обнаруживается множество других компонентов внеклеточного матрикса – ламенин, фибронектин, гепаран сульфат, энтактин. Под передней капсулой располагается эпителий хрусталика, значение которого в функционировании хрусталика исключительно велико. Эпителий выполняет барьерную, трофическую и камбиальную функции. Транспорт веществ в хрусталике полностью контролируется эпителием: против градиента концентраций в различные регионы этой структуры глаза через эпителий поступают аминокислоты, глюкоза, катионы различных металлов и др. Капсулярный эпителий распределяется зонально. Центральная зона занимает наибольшую площадь, митотическая активность клеток здесь минимальна. В промежуточной зоне эпителиальные клетки располагаются более густо, помимо этого, здесь возрастает индекс митотической активности до 1-3 на зону. В экваториальной зоне находится волокнообразующий эпителий, располагающийся правильными радиальными рядами. Индекс митотической активности здесь самый большой. Диаметр зон меняется в развитии – с возрастом происходит уменьшение по площади промежуточной, и в большей степени, экваториальной зон.

Стекловидное тело — самое объемное структурное образование глаза, составляющее 55 % его внутреннего содержимого. У взрослого человека масса стекловидного тела 4 г, объем 3,5— 4,0 мл. Стекловидное тело представляет собой прозрачное, бесцветное, гелеобразное вещество, заполняющее заднюю камеру глаза. Спереди стекловидное тело прилежит к хрусталику, зонулярной связке и цилиарным отросткам, а сзади и по периферии - ограничено сетчаткой. Стекловидное тело имеет шарообразную форму, несколько сплющенную в сагиттальном направлении. Его задняя поверхность прилежит к сетчатке, к которой оно фиксировано лишь у диска зрительного нерва и в области зубчатой линии у плоской части цилиарного тела. Этот участок в форме пояса шириной 2,0-2,5 мм называют основанием стекловидного тела. Стекловидное тело можно разделить на собственно стекловидную строму, которую пронизывает стекловидный (клокетов) канал, и окружающую его снаружи гиалоидную мембрану. Стекловидный канал представляет собой трубку диаметром 1-2 мм, которая идёт от диска зрительного нерва к задней поверхности хрусталика. В эмбриональном периоде жизни человека через этот канал проходит артерия стекловидного тела, исчезающая ко времени рождения. Стекловидное тело связано плотно с сетчаткой только в области своего переднего и заднего основания. Переднее основание – область, где стекловидное тело одновременно крепится к эпителию цилиарного тела на расстоянии 1-2 мм спереди от зубчатого края сетчатки и на протяжении 2-3 мм сзади от неё. Заднее основание – зона фиксации его вокруг диска зрительного нерва. Собственно стекловидное тело состоит из жидкого, вязкого, аморфного вещества, в котором имеются оптически пустые зоны, заполненные жидкостью, и коллагеновых фибрилл, которые, уплотняясь, образуют кортикальный слой. Стекловидное тело участвует в обмене внутриглазной жидкости, который в нём происходит активно и достигает 250 мл в сутки.

Сетчатка глаза (сетчатая оболочка) состоит из собственно нейральной сетчатки, имеющей многослойное, характерное для всех тканей нервной системы, строение и пигментного эпителия сетчатки (ПЭ).

Пигментный слой получает питательные вещества из кровеносных сосудов сосудистой оболочки глаза и обеспечивает потребности собственно фоточувствительных клеток. Он состоит из моноклеточного слоя высокопигментированных гексагональных клеток, расположенных на мембране и проявляет свойства типичных эпителиев: транспортную и барьерную функции. С противоположной от мембраны стороны на клетках пигментного эпителия присутствуют цилиндрические структуры – микроворсинки, которые прилегают к наружным сегментам фоторецепторных клеток, но не связаны с ними. Микроворсинки играют важную роль в обновлении наружных сегментов фоторецепторных клеток, как бы слущивая путем фагоцитоза самую крайнюю в данный момент часть наружного сегмента фоторецептора. Наконец, пигментный эпителий поглощает ту значительную часть попавшего в глаз света, которая, проходя без поглощения через внутренние слои сетчатки, предотвращая рассеивание.

Нейральная сетчатка и пигментный эпителий сетчатки представляют собой ткани различного функционального типа, хотя имеют общее происхождение и играют определяющую роль в свершении зрительного акта. Нейральная сетчатка устроена очень сложно и, в свою очередь, состоит из 9 слоев. Однако не все они представляют собой истинные слои, которые могут быть физически отделены друг от друга, это микроскопически различимые зоны, отличные друг от друга составляющими их элементами. Собственно сенсорную функцию в сетчатке выполняют фоторецепторные клетки: палочки и колбочки, представляющие собой высокоспециализированные нейроны. Палочек в сетчатке человека примерно 120 миллионов, причем расположены они преимущественно по периферии зрительной части сетчатки. Колбочки – их около 7 миллионов на сетчатку - концентрируются в центральной ее зоне (макула); особенно высока плотность колбочек в центральной ямке (фовеа) желтого пятна. Палочки отвечают за сумеречное зрение при низкой освещенности, которое и преобладает у животных, ведущих ночной образ жизни. Колбочки эффективно работают при достаточно ярком освещении и обеспечивают цветовое зрение, соответственно их больше у животных, активных преимущественно днем. Биполярные клетки, как и фоторецепторы, ориентированы перпендикулярно поверхности сетчатки. Их дендриты образуют синапсы с аксонами фоторецепторов. С помощью своих аксонов, обращенных внутрь глазного бокала, биполяры взаимодействуют с дендритами ганглиозных клеток - нейронов третьего порядка. От ганглиозных клеток по внутренней поверхности сетчатки тянутся их немиелинизированные аксоны. В центральной области глазного яблока они изгибаются под прямым углом в направлении зрительного нерва, который собственно и образован немиелинизированными аксонами ганглиозных клеток. Цепь фоторецепторы – биполяры – ганглиозные клетки выполняет функцию прямого пути передачи зрительных сигналов, иначе говоря, биполяры обеспечивают вертикальные связи между фоторецепторами и ганглиозными клетками. За взаимодействия по горизонтали, т.е. в латеральном по отношению к поверхности сетчатки направлении, отвечают горизонтальные клетки – на уровне синапсов фоторецепторов с биполярами – и амакриновые клетки – на уровне синапсов биполяров с ганглиозными клетками. Опорными элементами сетчатки являются глиальные, или Мюллеровы клетки. Их отростки простираются от внутренней границы сетчатки до фоторецепторного слоя, где наружные окончания Мюллеровских клеток соединены внутренними сегментами палочек и колбочек с помощью контактных комплексов. Таким образом, нервный слой сетчатки образован нейронами следующих типов: по вертикали – это фоторецепторы (палочки и колбочки), биполяры и ганглиозные клетки, по горизонтали - горизонтальные и амакриновые клетки. Из них фоторецепторы снабжены только аксонами, амакриновые клетки аксонов не имеют, но у них есть дендриты. Биполярные, ганглиозные и горизонтальные клетки обладают нервными отростками обоих типов, причем дендриты горизонтальных клеток образуют синапсы с колбочками, а их аксоны – с палочками.

Прежде чем свет достигает сетчатки, он проходит через следующие среды: 1) вещество роговицы; 2) пространство между роговицей и хрусталиком, так называемая передняя камера глаза, она наполнена жидкостью - водянистой влагой; 3) хрусталик; 4) прозрачное студенистое вещество, стекловидное тело, которое заполняет внутренность глаза за хрусталиком.







Дата добавления: 2015-10-19; просмотров: 1271. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия