В. П. Зинченко 9 страница
Необходимым условием успешного изучения двигательных актов является создание адекватного способа регистрации и анализа пространственно-временной развертки исполнительных действий. Этому требованию удовлетворяет экспериментальный стенд для исследования инструментальных двигательных навыков. Функциональная блок-схема экспериментального стенда (рис. 1) включает: систему управления объектом; цветной телевизионный индикатор; управляющую ЭВМ, которая работает как в режиме счета для многомерной статистической обработки результатов, так и в режиме управления экспериментом. Система управления объектом включает многостепенный орган управления, тензометрический усилитель и блок операционных усилителей. Орган управления манипуляторного типа (датчик пространственного перемещения руки оператора) представляет собой параметрическую модель руки человека; конструктивно выполнен как шарнирное соединение трех кинематических звеньев посредством одностепенных шарниров и имеет три степени подвижности. Всякое пространственное перемещение точки приложения оператором управляющего усилия трансформируется в соответствующие изменения углов, образованных кинематической схемой органа управления. Входными параметрами являются текущие значения тригонометрических функций углов, формируемые синусно-косинусными датчиками, установленными на осях вращения звена. По ним в аналоговом вычислительном блоке строится пространственная математическая модель органа управления относительно прямоугольной декартовой системы координат. Конструктивное решение органа управления позволяет сохранять содержание и естественную направленность мануальных движений оператора, хотя система управления предусматривает возможность нарушать однородность и. соответствие моторного и сенсорного полей введением коэффициентов сжатия пространства или введением электрической инверсии направления одноименных векторов. Используемый в экспериментальной установке цветной телевизионный индикатор можно назвать иллюзорно-изобразительным, так как за счет изменения величины управляемого сигнала создается впечатление объемности тестовых и управляемого сигналов. Индикатор выполнен на базе промышленного цветного телевизионного приемника и блока управления. В соответствии с подаваемыми на выходы блока управления аналоговыми электрическими сигналами на экране индикатора формируются световые сигналы различных цветов. Впечатление объемности достигается управлением изменения площади высвечиваемых сигналов. Перемещение световых сигналов в поле экрана осуществляется по горизонтали (X), вертикали (У) и изменению их световой площади(Z). Независимость управления световыми стимулами по параметрам X, У, Z позволяет кодировать ими пространственные координаты перемещения объекта управления и формировать систему отсчета сенсорного поля оператора. Управляющие координатные сигналы строятся в блоке управления объектом по уравнениям связи пространственного движения руки оператора и органа управления. Управляющая ЭВМ может эксплуатироваться в двух режимах: в активном режиме и режиме счета. Программы управления экспериментом и обработки полученных результатов реализуются по интерпретирующей системе на ЭВМ М-6000 системы АСВТ. Ведение эксперимента осуществляется в режиме диалога с машиной по принципу приоритетного обслуживания следующих устройств связи с объектом: модуля ввода дискретной информации сигналов управления экспериментатора и испытуемого; модуля группового управления выводом дискретной информации тестовых сигналов зрительного канала связи оператора; бесконтактного коммутатора; аналого-цифрового преобразователя, воспринимающего аналоговые сигналы относительно положения руки испытуемого в пространстве. Использование ЭВМ на линии эксперимента дает возможность предъявлять на экране меняющиеся по сложности, числу элементов и количеству составляющих маршруты движения; вводить сбои в привычное протекание действия, выражающееся в изменении траектории движения; вводить инверсию, т. е. нарушать привычное соотношение перцептивного и моторного полей. Стыковка с ЭВМ облегчила трудоемкую ручную обработку десятков тысяч измерений; позволила получать точностные и скоростные характеристики движения непосредственно в течение эксперимента. Описанный многоцелевой экспериментальный стенд позволяет регистрировать пространственно-временные — скоростные и точностные— параметры исследуемого процесса. Движения ручки-манипулятора записываются на ленте многоканального полиграфа в виде трех составляющих по оси X, У, Z. На отдельном канале регистрируются сигнал от ЭВМ о предъявлении новой матрицы и сигналы испытуемого о совмещении с каждым элементом данной матрицы. Движение управляемого пятна записывалось одновременно и из магнитофон, что давало возможность воспроизвести траекторию движения на графопостроителе, а также ввести данные эксперимента в ЭВМ для обсчета. Применение микроструктурного анализа, смысл которого заключается в выделении быстро текущих компонентов целостного действия, позволило выделить по каждой составляющей X, У, Z пространственного движения следующие стадии: латентную, фази-ческую (реализующую) и стадию контроля и коррекций. На рис. 2 представлен образец записи перехода на один элемент в одном из маршрутов движения. На рис. 2 отчетливо видно, что движению по каждой составляющей предшествует значительный латентный период. После активного движения по каждой составляющей регистрируется длительный период относительного покоя, предшествующий сигналу испытуемого о совмещении управляемого пятна с элементом матрицы. Этот период можно рассматривать как период коррекций, характеризующийся мелкими движениями по той или иной составляющей, и период контроля за качеством совмещения. Как видно из рисунка, время длительности стадий по каждой составляющей неодинаково: программирование по одной составляющей по сравнению с другой идет с некоторым запаздыванием, т. е. возможно последовательное планирование по каждой составляющей. Аналогичным образом с некоторым сдвигом происходят и реализация и контролирование. Эти данные послужили основанием для выделения так называемого «чистого времени» блоков-стадий: БФП — блока формирования программы, БР — блока реализации, БКК — блока контроля и коррекций, а также двух стадий разброса: Дt1, включающую в себя одновременно и планирование и реализацию, и Дt2, объединяющую реализацию и контролирование. «Чистое время» каждого блока — это то время, когда составляющие движения функционируют в терминах, присущих именно этому блоку, будь то планирование, реализация или контролирование. Разброс, характеризующийся величиной Дt1 и Дt2, дает представление о разбросе не только внутри одной стадии, но также между стадиями движения, характеризуя степень пространственности осуществляемого действия. Эксплуатация многоцелевого экспериментального стенда открывает широкие возможности для исследования процессов управления и построения движений. Для решения целого ряда прикладных задач весьма эффективным оказывается использование современных методических средств анализа когнитивных процессов. Для целого ряда современных операторских профессий решающей является способность зрительного обнаружения и различения критических элементов, предъявляемых на фоне других, отличающихся по одним и совпадающих по другим признакам элементов (экраны радиолокаторов, фотографии событий в камерах Вильсона, рентгеновские снимки и т. д.).Оптимизация такого рода деятельности связана в первую очередь с анализом свойств зрительной системы как фильтра пространственных и временных частот. Психофизические исследования на человеке и психофизиологические исследования на животных [21] показали, что в зрительной системе существуют каналы переработки информации, специфичные по отношению к определенным пространственным частотам изображения. Им свойственна максимальная чувствительность к синусоидально-модулированному распределению яркости, имеющему определенную пространственную частоту. Таким образом, зрительная система структурно и функционально способна к осуществлению ча- стотного анализа любого изображения, подобно тому как аналитически некоторая функция может быть представлена в виде сумм синусоидальных компонент при ее Фурье-разложении. Характеристики этих частотно-специфических каналов определяют функцию контрастной чувствительности зрительной системы (рис. 3), которая показывает, насколько различные пространственные частоты изображения усиливаются или, наоборот, ослабляются при прохождении через зрительную систему[2]. Несмотря на то что в силу нелинейности этих преобразований [85] функции контрастной чувствительности адекватно характеризуют возможности нашего зрения только для околопороговых интенсивностей стимуляции, она содержит существенно более полную информацию, чем многочисленные традиционные показатели «остроты зрения». Кроме того, при оценке любых средств зрительного отображения в первую очередь возникает вопрос о том, может ли быть вообще воспринята некоторая информация. Поэтому проблема надпороговой нелинейности зрительной системы в данном контексте не столь существенна. Рассмотрим более внимательно изображенную на рис. 3 функцию. Хорошо известному факту неразличимости достаточно мелких деталей соответствует падение правой ветви кривой чувствительности в области высоких пространственных частот. Этот недостаток зрения компенсируется с помощью различных способов увеличения угловых размеров изображения. Менее известным является факт сниженной чувствительности зрения к низким пространственным частотам, отражающимся в снижении левой ветви графика. Учет этого факта имеет большое значение, например, при рентгенологии, так как мягкие ткани и опухоли представлены на снимках именно низкочастотными, градуальными признаками яркости. Таким образом, в зависимости от того, в какой части спектра изображения может содержаться критическая информация, целесообразным оказывается не только увеличение, но и уменьшение размеров изображения. Поскольку диапазон возможных изменений угловой величины деталей весьма велик (примерно 1:20), ясно, что этого нельзя достигнуть простым изменением удаленности снимка. Интересным развитием этого подхода является дополнение анализа пространственной чувствительности информацией о временной разрешающей чувствительности глаза. Эти исследования, в частности, позволили установить, что возможность различения характеристик формы объектов снижается, если пространственно-временные усилия предъявления совпадают с условиями, в которых наблюдается кажущееся (стробоскопическое) движение [18]. налогичное восприятие быстродвижущихся реальных предметов хорошо известно каждому. Близкой областью прикладных исследований, испытавшей сильное влияние экспериментальной психологии, является область проектирования и создания многомерных устройств отображения информации. Здесь задача проектировщика состоит в том, чтобы по возможности одновременно и без интерференции сообщить оператору множество разнородных сведений, которые по отдельности или же в некоторой комбинации определяют правильность принимаемых им решений. Вся история работ в этой области показывает, что идеальным примером решения этой задачи является наше повседневное предметное восприятие, интегрирующее в единый, целостный образ не только разнообразную сенсорную информацию, но также данные, хранящиеся в памяти. Поэтому все более интересные разработки в этой области в большей или меньшей степени опираются на использование экологически естественных механизмов перцептивной обработки, детали которых выявляются с помощью разнообразных методик изучения восприятия. Так, исследования по психофизике восприятия пространства и движения [84] дали начало целому семейству хорошо описанных в специальной литературе устройств отображения типа контактных аналогов— «коналогов». В сочетании с возможностью обращения к точной цифровой информации о каждом из критических параметров ситуации «коналоги» позволяют одновременно учитывать многомерную пространственно-динамическую информацию о положении таких объектов, как самолет, ракета, подводная лодка и т. п. Большие возможности кроются в использовании резервов зрительной образной памяти для целей идентификации. Как показывают последние исследования, если запоминание случайных зрительных структур страдает от тех же ограничений, что и запоминание бессмысленного вербального материала [90], то запоминание предметных видовых слайдов, пусть даже довольно однообразных в тематическом отношении, намного превосходит по своему объему и продолжительности хранения все другие известные виды памяти. Может быть, не самым важным, но, безусловно, весьма демонстративным примером опоры на механизмы предметного восприятия может служить работа швейцарских авторов {91], перед которыми была поставлена задача создания алгоритмов, позволяющих обеспечить зрительное различение настоящих и фальшивых банкнот. Трудность этой задачи состоит в существовании значительного числа пространственных параметров рисунка (расстояния между элементами рисунка, их величина и т. п.), каждый из которых в норме характеризуется определенным диапазоном вариации. Интересно, что попытка представить эти параметры в виде абстрактных фигур — замкнутых полигонов (рис. 4)—оказалась столь же безуспешной, как и использование данных в цифровой форме. Напротив, переход к представлению этих параметров в виде условных изображений человеческих лиц (алгоритм Чернова), как видно из рис. 4, позволяет достаточно легко решить эту проблему. Для исследования процессов информационного поиска оператором успешно применяются такие методические приемы, как регистрация движений глаз, хронометрический анализ, факторный эксперимент и т. д. [8, 89]. Развитие этих, уже достаточно традиционных, с точки зрения их практического использования, направлений исследований привело к более детальному анализу возможности использования пространственных характеристик движений глаз в оптимизации сложных сенсомоторных координаций. Новым направлением исследования является экспериментальный анализ процессов информационного поиска, которые разворачиваются не во внешнем, а во внутреннем пространстве или, точнее, во внутренних субъективных пространствах памяти оператора. Прототипом большинства подобных исследований является методический прием хронометрического изучения процессов опознания: испытуемый должен как можно быстрее определить, принадлежит ли предъявленный ему объект к предварительно показанному «положительному» множеству [92]. Типичные результаты состоят в том, что время как положительных («да»), так и отрицательных («нет») реакций является линейно-возрастающей функцией величины «положительного» множества (рис. 5). Кроме того, наклон обеих функций оказывается примерно одинаковым. Это говорит о том, что информационный поиск среди репрезентированных в памяти элементов «положительного» множества представляет собой, во-первых, последовательный, а во-вторых, исчерпывающий процесс. Другими словами, это такой процесс, который продолжается до полного перебора в памяти элементов множества, даже если на одном из промежуточных этапов поиска было установлено тождество показанного элемента с одним из хранящихся в памяти. Если бы поиск прекращался сразу после установления тождественности (самоокончивающийся поиск), то в негативных пробах приходилось бы рассматривать примерно в два раза больше элементов, чем в положительных. Поэтому наклон функции отрицательных ответов должен быть в два раза больше наклона функции положительных ответов. Интересно, что в некоторых исследованиях были получены результаты, казалось бы, противоречащие этому анализу: функции для отрицательных реакций оказались несколько более крутыми, чем функции для положительных реакций, но не в такой степени, как можно было бы ожидать в случае самооканчивающегося поиска [83]. Более тщательный анализ, однако, показал, что эти результаты являются артефактами, к сожалению, еще распространенного в психологии приема усреднения индивидуальных данных. Результаты одной части испытуемых оказались в точности соответствующими исчерпывающему типу поиска, тогда как результаты другой, меньшей по количеству, группы испытуемых достаточно хорошо соответствовали самооканчивающемуся типу. Несколько парадоксальным оказывается факт, что последние испытуемые, выбравшие, казалось бы, более рациональную стратегию работы, в действительности выполняли задание менее эффективно, чем испытуемые первой группы. Этот последний пример непосредственно подводит нас к чрезвычайно важному для эргономики вопросу об описании и систематизации индивидуальных различий в характеристиках трудовой деятельности. Классические методы советской школы дифференциальной психологии [52, 69] создают основу эргономических приемов типологии и конкретного индивидуально-психологического анализа. Наряду с этим развитие представлений о микроструктуре различных видов познавательной и исполнительной деятельностей позволяет также дать психологически грамотную оценку различиям в особенностях реализующих их функциональных систем у конкретного индивида. При этом появляется возможность преодоления столь глубоко укоренившегося в дифференциальной психологии эмпиризма, сознательно ограничивающегося лишь исследованиями корреляционного типа. Более подробно пример такого подхода рассмотрен в разделе, посвященном методам анализа функциональных состояний [см. также 40].
§5. Методы оценки функциональных состояний В современной литературе обычно выделяются три типа критериев, с помощью которых можно оценить состояние субъекта: физиологические, поведенческие и субъективные показатели [40, 79]. Однако более четкой является классификация Бартлетта [80], который выделял физиологические и психологические показатели. В последнюю группу входят критерии эффективности выполнения различных психометрических тестов и анализ субъективной симптоматики конкретных видов функциональных состояний. Физиологические методы тестирования. Усилия большой группы исследователей направлены на поиск хотя и косвенных, но зато непосредственно регистрируемых показателей сдвигов в функционировании организма [20, 57]. Традиционное обращение к этому классу явлений определено целым рядом существенных причин. Главная из них — это возможность объективного описания наблюдаемых явлений. Кроме того, привлечение физиологических показателей существенно расширяет область доступных описанию проявлений изучаемой динамики поведенческих реакций и создает возможность хотя бы для гипотетического соотнесения психологических явлений с их органической основой. Немаловажным аргументом в пользу применения физиологических показателей является принципиальная возможность количественной оценки сдвигов в функционировании любой системы. В качестве возможных индикаторов динамики функциональных состояний рассматриваются самые разнообразные показатели функционирования центральной нервной системы. К их числу относятся, прежде всего, электрофизиологические показатели ЭЭГ, ЭМГ, КГР, ВП, а также частота сердечных сокращений, величина артериального давления, состояние тонуса сосудов, величина диаметра зрачка и многие другие (рис. 6). Кроме того, интенсивно развиваются исследования биохимических сдвигов в организме при различных функциональных состояниях. На базе же частных методик разрабатываются комплексные, полиэффекторные методы регистрации. Изменения параметров электрической активности мозга традиционно рассматриваются в качестве непосредственного индикатора динамики уровня активации. Различным видам функциональных состояний ставят в соответствие характерные изменения в ЭЭГ. Так, появлением развивающегося утомления считается реакция дисинхронизации α-ритма в сочетании с появлением периодов медленной волновой (у- и 9-ритмы) активности. По мере возрастания утомления продолжительность этих периодов увеличивается и имеет место картина «гиперсинхронизации» ЭЭГ. Другим общепринятым методом изучения динамики функциональных состояний является кожно-гальваническая реакция, используемая в качестве показателя «вегетативного тонуса». Экспериментально доказано существование непосредственной связи характера электрокожных ответов с изменением состояния ретикулярной формации, и следовательно, они могут рассматриваться как один из наиболее приемлемых критериев уровня общей активности. Использование этого показателя связано прежде всего с задачей диагностики состояний эмоциональной напряженности.К числу наиболее чувствительных и информативных показателей динамики функциональных состояний относятся различные параметры деятельности сердечно-сосудистой системы: анализ основных составляющих ЭКГ, частота сердечных сокращений, величины артериального давления, кровенаполнения, перивескулярного и капиллярного сопротивления. Развитие состояний напряженности и утомления, связанное с увеличением энергетических затрат, приводит к закономерному возрастанию частоты сердечных сокраще- ний, дыхательных движений и других параметров, свидетельствующих об усилении обменных процессов. Типичная картина изменений основных параметров ЭКГ для определенного субъекта может служить надежным показателем степени адаптации к заданному уровню информационной нагрузки. Динамика вегетативных соматических показателей: температура тела, функций пищеварительной и выделительной систем и т. д. — с успехом используется для характеристики непроизвольных сдвигов уровня активации в ходе, например, суточного цикла. Обширная область исследований посвящена изучению особенностей гормональных сдвигов под влиянием различных нагрузок и условий деятельности. Несмотря на чисто технические трудности использования этих показателей в диагностических целях, число разработываемых и уже применяемых на практике методик непрерывно растет. Помимо изучения количественной динамики секреции различных гормонов как показателей суточной ритмики большое число исследований посвящено выявлению особенностей секреторной деятельности в различных поведенческих ситуациях, главным образом в зависимости от характера и уровня нагрузки. В качестве типичных корреляторов стресса, повышенной напряженности и утомления, обычно указывают на повышение содержания в крови и моче работающего человека 17-оксикортикостеридов, или «гормонов стресса» — адреналина и норадреналина. Динамика физиологических показателей отражает не только общие сдвиги уровня активности организма, но и изменения нагрузки отдельных функциональных систем. По имеющимся данным, анализ колебаний мозговой гемодинамики при выполнении достаточно сложной интеллектуальной деятельности позволяет выделить основные стадии снижения умственной работоспособности и определить степень участия различных мозговых структур в процессе решения разных задач. Отмечается наличие характерной топографии пунктов максимальной дисинхронизации α-ритма при решении разных задач в зависимости от их содержания. Влияние утомления приводит к перестройке структурно-функциональной системы электрической активности мозга, также специфичной для различных видов деятельности. Широко распространено использование в исследованиях величины нагрузки таких ее физиологических коррелятов, как изменения величины диаметра зрачка и кожно-гальванической реакции, позволяющие осуществлять посекундный контроль затрачиваемых на выполнение задания усилий (рис. 7). В связи с этими данными, свидетельствующими о системном характере наблюдаемых сдвигов, возрастает актуальность описания комплекса физиологических реакций, специфичных для того или иного состояния организма. Адекватное решение этой задачи возможно на основе полиэффекторной регистрации показателей. Однако реализация этого требования чрезвычайно трудна вследствие разнообразия реакций и неоднозначности сдвигов, наблюдаемых при одном и том же состоянии организма. Нет сомнения в том, что умственная нагрузка и изменение функциональных возможностей организма сопровождаются изменениями ряда физиологических показателей. К сожалению, существует много других факторов, которые аналогичным образом влияют на те же самые параметры. Отмечаются [20] нежелательные свойства такого широко используемого показателя, как ЭЭГ: вариабельность ее изменений у одного и того же лица, вариабельность этих изменений у разных лиц, сходство изменений ЭЭГ при существенно различных состояниях. Следует подчеркнуть, что перечисленные особенности характерны и для других физиологических показателей. Использование физиологических показателей в диагностических целях сдерживается и существенными трудностями метрологического порядка. Несмотря на принципиальную возможность непосредственного количественного изменения наблюдамых в эксперименте сдвигов физиологических функций, перед исследователем встает целый ряд проблем. К их числу относятся задачи создания и выбора адекватных исследуемому материалу методических средств анализа (математические модели и концептуальные схемы анализа). Кроме того, существует целый ряд общих для всех видов физиологических измерений метрологических проблем, главные из которых — это проблемы эталонного уровня функционирования и нелинейности шкал измерений [57]. Перечисленные факты, а также сохраняющееся методическое несовершенство процедур регистрации и обработки физиологических данных представляют собой, как правило, реальные трудности в деле использования показателей для практической диагностики динамики функциональных состояний. Психологические методы тестирования. Разработка психологических методов оценки функциональных состояний осуществлялась преимущественно в контексте исследований утомления и динамики работоспособности. В истории развития этой проблемы выделяется ряд основных этапов, связанных с принципиально различными подходами к постановке задач исследования и оценкой диагностической ценности тех или иных показателей [47, 81]. Современный этап изучения утомления начался с появления известной монографии Бартли и Шута [79]. Подчеркнув сложную природу этого феномена, авторы выделили и подробно проанализировали три основных аспекта проблемы. Термином «утомление» был обозначен личностно-когнитивный синдром, объединяющий разнообразные расстройства психических функций и субъективные ощущения усталости, отвращение к работе, переживания физического дискомфорта и т. д. Экспериментальная реализация этого подхода предполагает создание адекватных задаче исследования субъективных и психометрических методов исследования.. Перспективность применения в диагностических целях субъективных оценок утомления отмечалось еще А. А. Ухтомским, который писал, что «так называемые субъективные оценки столь же объективны, как и всякие другие, и дадут на практике критерии утомления и утомляемости более деликатные и точные, чем существующие лабораторные методы сами по себе» [цит. по 47], и это объясняется многообразием проявлений симптоматики утомления во внутренней жизни индивида — от хорошо знакомого каждому комплекса ощущений усталости до специфических изменений самоафферентации, затрагивающих познавательную и мотивационную сферы. Несмотря на широко распространенное мнение о первостепенном значении данных субъективного опыта для диагностики утомления, эта область исследований долгое время оставалась в стороне от научной разработки. Только в течение последних 10—15 лет эта область исследований начала интенсивно и плодотворно разрабатываться. Симптомы проявления утомления в психической жизни индивида весьма разнообразны. Непосредственным выражением утомления являются чувства усталости, слабости, бессилия, быстрой утомляемости, сонливости. При сильных степенях утомления обычно наблюдаются негативно-окрашенные эмоциональные реакции: отвращение к работе, раздражительность, неприязнь к окружающим, тягостное напряжение и т. д. С разной степенью осознанности переживаются состояния физиологического дискомфорта: повышенная потливость, учащение сердцебиения, появление отдышки, тремора, болей в различных частях тела и т. д. Кроме того, к субъективной симптоматике можно отнести осознаваемые расстройства в области различных психических функций. К их числу относятся характеристики внимания (вялое, малоподвижное или хаотичное, неустойчивое), разнообразные сенсорные расстройства, нарушения в моторной сфере (изменение темпа движений, снижение точности и координированности, деавтоматизация навыков). Среди перечисленных симптомов можно выделить две категории: субъективные оценочные реакции, характеризующие отношение индивида к собственному состоянию, и объективно контролируемые признаки утомления (физиологический дискомфорт и нарушения психической деятельности), которые могут осознаваться человеком. Существование качественно различных групп симптомов дает основание для развития различных направлений в методах субъективной диагностики — субъективного шкалирования и опросников. Использование опросников направлено на выявление качественно разнообразных симптомов утомления, которые с большей или меньшей легкостью могут быть осознаны человеком. Количественная оценка или определение степени выраженности каждого признака не ставится главной целью подобных исследований. Состояние человека оценивается общим количеством перечисленных симптомов и их качественным своеобразием.
|