В. П. Зинченко 13 страница
Тщательный анализ рисунка даже многократно повторяющихся в одной и той же ситуации движений свидетельствует об их уникальности и своеобразии. Детальный анализ моторного акта показывает, что его биодинамическая ткань неповторима как отпечаток пальца. Это означает, что строится не только образ ситуации и адекватная ей моторная схема, но что на основе этой схемы строится (а не просто повторяется) каждый живой моторный акт. Результаты и сам ход этой работы не вытекают однозначно из структуры внешнего стимульного подкрепления. В этом смысле объяснение происходящего движения по схеме «стимул-реакция» не соответствует существу дела. Исследователям предстоит еще разработать понятия, относящиеся к указанной выше работе по построению пространственного моторного действия. Двигательное действие, рассматриваемое как необходимый компонент деятельности, должно обязательно соотноситься с ее когнитивными и личностными компонентами, такими, например, как образ и цель. При этом, как указывалось выше, и сама деятельность в целом и все ее компоненты обязательно характеризуются предметно-смысловыми чертами и пространственно-временной определенностью. Истоки этого подхода восходят к именам И. М. Сеченова и Ч. Шеррингтона. И. М. Сеченов неоднократно подчеркивал, что «чувствование повсюду имеет значение регулятора движения, другими словами, первое вызывает последнее и видоизменяет его по силе и направлению» [55, с. 236—237]. Интересно и то, что Сеченов не ограничивал задачу физиологии и психологии изучением отдельных движений, а говорил о необходимости изучения той области явлений, в которой «чувствование превращается в повод и цель, а движение — в действие». На современном этапе изучения рабочих движений, трудовых операций и действий, сложнейших форм исполнительной деятельности человека особенно важно отметить указанное Сеченовым направление поисков решения и поныне кардинальной для физиологии и психологии проблемы: каков механизм регуляции движений чувствованиями? Возможность такой регуляции обеспечена уже тем, что мышца, представляющая собой «двойственный орган, наш рабочий орган и вместе с тем исконный, первоначальный орган чувств, воспитавший в порядке своих свойств все другие органы чувств, окрашивает все наши представления об окружающем мире в образах движения» [53, с. 936]. Более того, Сеченов писал, что мышца дала нам наши представления о пространстве, времени, о числе, о счете и т. д. Все это может быть возможным только при условии, что 'сами движения и действия не являются лишь элементарными и утилитарными актами исполнения, а осуществляют также познавательные, когнитивные функции и функции экспрессивные. Последние отчетливо реализуются не только в движениях, но в позно-тонических компонентах действия, являющихся носителями его личностно-смыслового содержания. Многие трудовые движения и действия настолько совершенны, координированы, выразительны и красивы, что они нередко включаются в театрализованные представления. Не лишена смысла высказываемая время от времени идея создания специальной хореографии трудовых процессов. Функциональная двойственность мышцы, функциональная гетерогенность движений и действий обеспечивают не только потенциальную, но и актуальную целостность деятельности, возможности ее развития и совершенствования. Примечательно в этом смысле предположение Ч. Шеррингтона о том, «... что в осуществлении действий, направленных на окончательный, завершающий акт в процессе отбора открывается возможность элементам памяти (хотя и рудиментарной) и элементам предварения (хотя и незначительным) развиться в психическую способность к «развертыванию» настоящего назад, в прошлое, и вперед, в будущее, которая у высших животных является непременным признаком более высокого умственного развития» [60, с. 314]. Именно эта «психическая способность» и является регулятором исполнительных актов. И. М. Сеченов очень тонко понимал это, говоря, что чувствования, даваемые сознанию органами чувств, служат источниками движений не прямо, а через психику,— поскольку с сигналом связан определенный смысл. Различие атомарно-рефлекторного и целостного подходов зафиксировано и в языке описания двигательного поведения. Для первого преимущественно использовались такие термины, как реактология, рефлексология, для второго — психомоторика, психонервная деятельность, психическая деятельность и т. п. Разумеется, само по себе использование терминов «рефлекс» или «реакция»не означает еще, что тот или иной автор является сторонником «атомарного» подхода. Именно в этих терминах первоначально закладывались основы структурного подхода к изучению движений и действий. Так, Ч. Шеррингтон, анализируя предваряющие и завершающие реакции, писал: «Нетрудно видеть, какие широкие возможности для приспособительных реакций представляет такое устройство, состоящее из целой цепи последовательных актов, каждый из которых изменяет влияние акта, ему предшествовавшего» [60, с. 312]. В этом отрывке отчетливо просматривается идея целостности приспособительной деятельности. Аналогичным образом И. П. Павлов, анализируя цепи двигательных рефлексов, пришел к идее динамического стереотипа как целостного образования. С тех пор как IT. М. Сеченов и Ч. Шеррингтон психологизировали трактовку двигательного поведения, накоплены многочисленные данные о решающей роли сенсорных процессов в управлении человеческими движениями. Анализируя строение анатомического аппарата, обеспечивающего движения высших животных и человека, А. А. Ухтомский отмечает его своеобразие по сравнению с искусственными механическими устройствами, характеризующееся значительно большим количеством степеней свободы. Ни костно-мышечный аппарат в целом, ни какая-либо его часть не составляет готового механизма для выполнения какого-либо определенного целесообразного акта, а представляет собой лишь совокупность известных анатомических компонентов, необходимых для создания такового. Особенности строения опорно-двигательного аппарата обусловливают пластичность поведения высших животных и человека и вместе с тем делают задачу управления этим поведением необычайно сложной и трудной. Поскольку управление предполагает ограничение степеней свободы, а в самом устройстве исполнительных механизмов у живых организмов такого рода ограничения практически отсутствуют, функции регуляции выполняемых действий должны взять на себя центральные механизмы. Рассмотрим кратко эволюцию представлений и современные взгляды на механизмы управления движениями. Первоначально предполагалось, что центральные механизмы могут выполнить эту функцию, используя жесткие шаблоны, которые заранее предопределяют характер и последовательность требуемых движений. Р. Вудвортс [80] для такого способа построения движений ввел термин «центральное», или «моторное», программирование. Он доказывал наличие моторных программ, изучая быстрые произвольные движения человека. Анализ кинематических характеристик точных движений руки привел его к заключению, что существует фаза движения, независимая от зрительной обратной связи, фаза, определяемая первоначальной программой. Наряду с этой фазой существует и вторая фаза, совершаемая с учетом зрительной обратной связи и обеспечивающая точностные характеристики движения. Таким образом, Вудвортс описал способы управления движением, получившие позже наименование управления по открытому и закрытому контурам регулирования. В настоящее время каждый из этих способов в значительной степени абсолютизирован и имеет своих сторонников. В пользу каждого из них накоплено значительное число экспериментальных данных, ведутся дискуссии между представителями теории открытого и закрытого контуров. К. Лешли был, видимо, одним из первых, кто отчетливо сформулировал концепцию центральных моторных программ и экспериментально доказал, что выработка навыка представляет собой центрально-организованный процесс, в реализации которого про-приоцептивные механизмы могут не играть существенной роли. Доводы Лешли, относящиеся к тому, что заученный навык может быть выполнен различными моторными структурами, действительно подтверждают идею моторного программирования, но сейчас практически не используются для доказательства слабой роли кинестетического контроля. Поиски доказательств в пользу открытого контура шли по пути изучения быстрых баллистических движений и блокирования каналов обратной связи, функционирующих при выполнении двигательных актов. Сторонники концепции моторного программирования и открытого контура оставляют за афферентацией лишь пусковые функции и модулирующие влияния. Однако до настоящего времени не получено решающих доказательств того, что произвольное движение человека может осуществляться только как результат центрально-организованных нервных команд, которые структурируются перед началом движения и позволяют осуществлять движение при отсутствии периферической обратной связи. Главные недостатки систем открытого контура состоят в том, что они не обладают механизмами обратной связи для исправления ошибок, возникающих как вследствие свойств их входов, так и вследствие трансформации сигналов внутри системы. Этот тип систем обладает слабыми компенсаторными возможностями. В рамках концепции открытого контура были детально разработаны представления о моторных программах. Понятие моторного программирования означает, что наборы моторных команд, как врожденных, так и заученных, хранятся в центральной нервной системе и могут вызываться и синтезироваться в желаемое движение. Моторная программа — это тщательно скоординированный порядок синергии (иногда их называют субрутинами, или субрежимами), которые вместе охватывают требуемое движение и которые не зависят от обратной связи. Независимо от отношения представителей концепции открытого контура к участию в регуляции движений обратной связи ими развиваются интересные представления об иерархии моторных программ, о существовании обобщенных программ, программ-схем, нижние звенья которых освобождают основную программу от обременительных вычислений. Важное значение имеют также предположения о связи программ с мотивами и целями, которые трансформируются в некоторое внутреннее представление субъекта о желаемом, требуемом движении или действии. Другими словами, моторные программы более тесно связываются с образом ситуации, с образом действия, не только с набором команд, хранящихся в нервной системе. Концепция открытого контура регулирования с минимальными оговорками и ограничениями применяется для объяснения механизмов движений глаз человека. В многочисленных исследованиях установлена почти однозначная зависимость между скоростью скачка на начальном этапе движения и конечной амплитудой скачка. Это означает, что уже до начала движения запрограммирована скорость саккады. На основании электрофизиологических исследований сделан вывод о том, что управление саккадическими движениями в одном фиксированном направлении сводится к определению временного отрезка, в течение которого прилагается постоянная сила, сокращающая прямые мышцы глаза. Зачатки противоположных идей относительно кольцевого или замкнутого (закрытого) контура регуляции движений мы находим у В. Джемса [70], Ч. Шеррингтона [60] и др. Джемс предположил, что периферическая обратная связь от одной части движения вызывает к действию следующую, и выдвинул гипотезу «цепных рефлексов», против которой позже выступил Лешли. В соответствии с теорией закрытого контура предполагается, что ответ не просто запускается рецепторикой, но и управляется ею. Управление движением по «закрытому» контуру предполагает передачу с помощью обратных связей информации о соответствии движения требуемой цели и выработку на основе этого новых управляющих команд. Обратная связь выполняет две функции: с ее помощью определяются пространственные характеристики цели, необходимые для составления программы баллистического движения, а также осуществляется соотнесение результатов выполнения этих программ с истинным положением цели, служащее для уточнения программ последующих движений. Наиболее полная аргументация того, что жесткое программирование не может обеспечить целесообразный эффект движения, дана Н. А. Берн штейном. Теория Н. А. Бернштейна охватывает широкий класс функционально-различных движений и представляет собой общую теорию поуровневого управления и построения движений человека. Эта теория включает в себя три фундаментальных принципа: центрального программирования, сенсорных коррекций и уровневой организации движений. Принцип координирования движений изложен им в безупречной с точки зрения современной теории автоматического регулирования форме: «... как только орган, находящийся под действием внешних и реактивных сил, плюс еще какая-то добавка внутренних, мышечных сил, отклонится в своем результирующем движении от того, что входит в намерения центральной нервной системы, эта последняя получит исчерпывающую сигнализацию об этом отклонении, достаточную для того, чтобы внести в эффекторный процесс собственные адекватные поправки. Весь изложенный принцип координирования заслуживает поэтому названия принципа сенсорных коррекций» [6, с. 28]. Н. А. Бернштейн долгое время решительно отвергал всякую возможность управления движением по разомкнутой схеме. Однако позже он отошел от такой крайней точки зрения и допустил возможность того, что в некоторых элементарных процессах дуга не замыкается в рефлекторное кольцо либо из-за кратковременности акта, либо вследствие его крайней элементарности. Сенсорные коррекции осуществляются в общем случае всеми имеющимися в распоряжении организма рецепторными аппаратами. В частных случаях некоторые из обратных связей могут не участвовать в управлении движением. Первичные сигналы рецепторов предварительно подвергаются сложной обработке и «перешифровке», необходимой, например, для того, чтобы их можно было сличить с проектом движения, построенным на языке пространственно-кинематических представлений. Полученные в результате обработки «синтезы», составленные из сигналов всех видов обратных связей, участвующих в управлении данным движением, служат для сенсорных коррекций. Понятие о сенсорном синтезе играет в модели Бернштейна фундаментальную роль. Состав образующих его афферентаций, т. е. обратных связей, и принцип их объединения служат главным критерием, отличающим один уровень построения движения от другого. Каждая двигательная задача находит себе в зависимости от своего содержания и смысловой структуры тот или иной ведущий уровень. Уровни различаются между собой не только видом сенсорного синтеза, но и анатомическим субстратом, т. е. совокупностью органов нервной системы, без которых осуществление функции этого уровня невозможно. В зависимости от цели и смыслового содержания двигательного акта один из уровней берет на себя роль ведущего, координирующего действия нижележащих фоновых уровней. Во всяком движении осознается только ведущий уровень. Выработка двигательного навыка — это процесс формирования в ходе обучения и тренировки уровневого состава движения, выделения ведущего уровня и срабатывания между собой всех вовлеченных в управление уровней. Необходимым условием успешного изучения двигательных актов является создание адекватного метода, позволяющего регистрировать и анализировать пространственно-временную развертку движения, весь ход двигательного акта «по всему моторному аппарату тела». В исследованиях исполнительной деятельности, направленных на выявление объективных индикаторов процесса формирования сенсомоторного образа пространства и структурыдействия, использовался микроструктурный метод анализа, суть которого состоит в выделении быстротекущих компонентов целостных психических актов и в анализе их взаимоотношения. Использование этого метода при исследовании произвольных пространственных действий позволило вскрыть структуру пространственного действия; проследить динамику ее становления и развития в различных условиях протекания действий; выделить ряд компонентов-стадий: формирования программы, реализации, контроля и коррекций, составляющих структуру действия, проследить динамику их развития, соотношения их на разных этапах освоения действия, а также изменения, происходящие внутри выделенных компонентов целостного действия. (Описание методики исследования см. в главе 3). Экспериментальная ситуация предусматривала исследование формирования инструментального пространственного действия в различных условиях. В стабильных условиях маршруты требуемого движения были одинаковой величины и сложности. В динамических условиях маршруты отличались числом опорных элементов и числом пространственных составляющих движения. В условиях инверсии вводилось рассогласование (полное или частичное) между перцептивным и моторным полями. Инверсия вводилась после выработки навыка в условиях нормы. В результате исследования было обнаружено, что в процессе формирования навыка (стабильные условия, норма) наблюдается сложная динамика во взаимоотношениях между отдельными стадиями целостного действия. Во-первых, в процессе освоения пpoстранственного действия наблюдается уменьшение времени каждой выделенной стадии; во-вторых, сокращение времени в каждой стадии происходит неравномерно, в-третьих, по мере тренировки происходит перераспределение времени между выделенными стадиями. Неравномерность темпа сокращения времени в выделенных стадиях свидетельствует о том, что все компоненты целостного действия совершенствуются неодинаково. В исследовании обнаружена последовательность формирования компонентов пространственного действия. Быстрее всего складывается стадия формирования моторных программ, за ней следует стадия контроля и коррекций, обе они формируются на фоне постепенного уменьшения времени, которое занимает стадия реализации моторных программ. Лишь после того как оба когнитивных компонента сформировались, видимо, возможно, последнее сокращение времени выполнения действия в целом. И это сокращение происходит за счет его исполнительной части. Перераспределение времени между стадиями внутри целостного действия на разных этапах формирования свидетельствует о том, что каждое новое упражнение — это новый процесс решения задачи, процесс изменения и совершенствования средств и способов ее решения. При введении инверсии как средства разрушения сформированного пространственного действия было показано, что субъективно процесс формирования навыка в условиях инверсии переживается как значительно более трудный в сравнении с нормой. Формирование навыка в любом виде инверсии (полной или частичной) облегчает усвоение любого другого вида инверсии. Переход oт нормы к любому виду инверсии происходит с большими трудностями и требует большего времени, чем обратный переход. Сопоставление хода формирования совместимого и инвертированного инструментального пространственного действия показывает, что при переходе к работе в условиях инверсии наблюдаются эффекты переноса и интерференции (рис. 10). В ходе перестройки навыка наблюдается различная динамика поведения функциональных компонентов, анализ которой позволяет заключить, что более быстрое по сравнению с нормой формирование инвертированного навыка возможно за счет переноса фазических, скоростных черт пространственного действия. Стадия реализации почти полностью сохранила свои характеристики. Инверсия перцептивного и моторного полей незначительно отразилась на скоростных характеристиках фазических элементов действия. В случае когнитивных компонентов мы имеем дело не с переносом, а с интерференцией образа пространства, построенного в условиях нормы, и образа, который еще только строится в условиях инверсии. Это сказалось на характере когнитивных элементов. Более того, именно это же сказалось и на характеристиках стадий реализации на начальных этапах построения нового действия в новых условиях. Фазическая часть действия вновь взяла на себя когнитивные функции. При помощи движения руки испытуемые прощупывают новое пространство и находят признаки этого пространства. Когда построен новый сенсомоторный образ пространства, стадия реализации освобождается от когнитивных функций и начинает работать, как при совместимом пространственном действии, но теперь она реализует другие программы. Когнитивные компоненты продолжают совершенствоваться уже без видимого участия стадии реализации. Таким образом, явления переноса и интерференции имеют разную природу. Перенос происходит за счет исполнительной части действия, а интерференция — за счет когнитивных компонентов, однако явления эти не взаимоисключающие, они взаимодействуют в каждом пространственном действии. Динамические условия предъявления информации сказались в основном на характеристиках когнитивных компонентов исследуемого процесса аналогично изменениям, зарегистрированным при введении инверсии. Особенно резко меняющиеся условия предъявления информации сказались на характеристиках стадии контроля и коррекций, время функционирования которой в 2— 3 раза превышает время, необходимое для контролирования в стабильных условиях. Это связано с тем, что в условиях неопределенности на стадию контроля и коррекций ложится двойная нагрузка: не только проконтролировать каждое дискретное действие, но и, что особенно существенно, соотнести условия предъявления информации с совершаемым действием. Иначе говоря, в функции контроля входит не только проверка результата действия, но и контроль за адекватностью выбранной программы предстоящего действия. Результаты исследования дали новый материал для изучения процесса формирования сенсомоторного образа рабочего пространства, строящегося на основе активных действий, когнитивный компонент которых является наиболее весомым на начальном этапе формирования нового действия. На основании данных о показателе когнитивности, характеризующем динамику временных отношений когнитивных и исполнительных компонентов и выражающемся через отношение суммы времени когнитивных компонентов к исполнительному, явствует, что по мере овладения навыком удельный вес когнитивных компонентов в целостном действии уменьшается. Когда построен образ сенсомоторного пространства, функция когнитивных компонентов сужается до программирования осуществляемого действия, что, естественно, сказывается на уменьшении показателя когнитивности. По сравнению с динамичными условиями в стабильных условиях предъявления информации уменьшение значений показателя когнитивности выражено за счет того, что в статике функция контроля в большей степени редуцирована. На начальных этапах формирования нового действия, в каких бы условиях оно ни протекало, границы между стадиями нечеткие. Разброс между составляющими X, Y, Z внутри каждой стадии настолько велик (в отдельных случаях до секунды), что создается впечатление как бы вхождения одной стадии в другую. Это положение вполне соответствует тезису, сформулированному в контексте системно-структурных исследований, согласно которому менее развитая структура характеризуется меньшей дифференцированностью ее компонентов. Сказанное позволяет сделать два предположения: первое — на начальных этапах обучения возможны параллельное выполнение программы и ее реализация, а также peализация и контролирование; второе, вытекающее из первого, состоит в том, что на начальных этапах формирования навыка выполнение программы, ее реализация и контроль идут отдельно по составляющим движения. Иными словами, происходит последовательное планирование движения по каждой координате. Аналогичным образом последовательно осуществляются реализация и контролирование. Освоенное действие характеризуется значительным уменьшением разброса, а так как разброс характеризует качество действия (его пространственность),то на конечных этапах обучения сформированное действие приобретает черты более четкой функциональной структуры. И если на начальных этапах обучения функциональная структура действия по показателю пространственности сопоставима для различных условий протекания действия, то в конце обучения оказываются сопоставимы действия, формируемые в динамических условиях и в условиях инверсии, которые по значениям показателя разброса в 2— 3 раза превосходят значения этого показателя в условиях нормы. Следовательно, введение инверсии или неопределенности неизменно вызывает ухудшение качества действия, выражающееся в увеличении значений показателя разброса. Иначе говоря, качество действия чрезвычайно чувствительно к различным изменениям, вносимым в условия протекания действия. Знание функциональной структуры действия, исследование динамики ее формирования и становления, установление взаимосвязей и взаимоотношений между компонентами исследуемого объекта открывают возможности контроля за процессом формирования и оптимизации движений и действий. Изменение удельного веса компонентов в структуре действия как в процессе его формирования, так и под влиянием тех или иных изменений, внесенных в условия его протекания, свидетельствует о том, что превалирование того или иного типа регулирования двигательными актами зависит в основном от условий, в ко- торых действие протекает, и от степени освоенности, обученности. На рис. 11 представлены удельные веса компонентов целостного действия в различных условиях его протекания и на разных этапах его формирования. Соотношение компонентов функциональной структуры целостного действия в начале его формирования сходно независимо от того, в каких условиях протекает действие. В конце формирования сходное соотношение компонентов в структуре действия отмечается у действий, формируемых в динамических и инвертированных условиях; действие, формируемое в условиях нормы, имеет совершенно отличную от них структуру. Ситуация инверсии и динамики и ситуация нормы могут быть сопоставлены в терминах открытого и закрытого контура управления. В условиях нормы после длительной тренировки у испытуемых формировались симультанный образ ситуации и программа, организующая моторный ответ, т. е. значительная часть действия осуществлялась как бы по открытому контуру, что подтверждается значительным удельным весом стадии формирования программ и сравнительно небольшим весом стадии контроля и коррекций. В ситуации инверсии и в динамических условиях предъявления информации в течение проведенных экспериментальных серий сохранилась регуляция по принципу замкнутого контура, о чем свидетельствует удельный вес стадии контроля и коррекций, составляющей примерно 50% от целостного действия. К настоящему времени предложено большое число разнообразных вариантов теорий закрытого контура регулирования, описывающих более или менее сложные акты человеческого поведения и деятельности. Эти теории относятся к таким процессам, как дискретные и непрерывные двигательные процессы, перцептивно-моторные навыки, речевое поведение и т. д. Общие черты этих теорий состоят в том, что закрытый контур предполагает знание субъектом хода осуществления движения. Это знание получается посредством обратной связи от движения и направляется на управление этим движением. Закрытый контур основывается на контроле за информацией от элементов системы, «подсчете» и учете ошибок, указывающих на направление или степень отклонения выхода системы за пределы заданного, исправлении этих ошибок. Основная функция систем закрытого контура состоит в минимизации этих ошибок. Интересный вариант замкнутого контура управления движениями при формировании двигательных навыков предложен Дж. Адамсом [63]. При разработке своей теории Адаме широко использовал представления об акцепторе действия П. К. Анохина, о задающем элементе и приборе сличения Н. А. Бернштейна и о нервной модели стимула Е. Н. Соколова. Теория разработана для объяснения процесса научения простым дискретным движениям, выполняемым в умеренном, ненавязанном темпе, т. е. является теорией формирования двигательного навыка. Она относится в первую очередь к линейным перемещениям руки на заданное расстояние в условиях, когда испытуемый не видит отметку, обозначающую нужное конечное положение руки, а длина пути задается ему или в словесной форме, или он ее усваивает в ходе тренировок, перемещая руку до упора в ограничитель. Согласно Адамсу, центральное место в замкнутом контуре занимают механизмы, с помощью которых информация, получаемая по каналам обратной связи, сравнивается с эталоном для обнаружения ошибок, т. е. в системе предполагается наличие эталонного механизма, в котором фиксировано заданное действие, каналов обратной связи, а также аппарата сравнения, выделения и исправления ошибок. Для формирования навыков первостепенное значение имеет знание о результатах каждого выполненного движения. Это знание используется человеком для того, чтобы перестроить движение и исключить или уменьшить ошибку в каждой после дующей пробе. Подобные последовательные коррекции в конце концов приводят к выработке правильного движения. Эталонный механизм называется перцептивным следом, который представляет собой хранящуюся в памяти информацию о выполненных ранее движениях. Понятие перцептивного следа эквивалентно понятию нервной модели стимула [56]. Перцептивный след представляет собой механизм, который детерминирует амплитуду движения, а возможно и временную организацию движения. Источниками формирования перцептивного следа в общем случае служат все виды обратных связей: зрительная, слуховая, проприоцептивная, а также рецепторы прикосновения и давления. Прочность перцептивного следа возрастает с увеличением числа проб. При этом информация о ранних, малоточных попытках забывается и растет удельный вес последних проб, реализованных с большой точностью. Однако научение движению не сводится к столь простой схеме, по которой достаточно, чтобы был выработан перцептивный след и чтобы стимулы текущей обратной связи оказались соответствующими ему. На начальной стадии научения решающее значение имеет осознанное и вербализованное знание результатов. Эта стадия названа вербально-двигательной. Она заканчивается тогда, когда в ряде реализаций получен удовлетворительный результат и значения ошибок малы. Перцептивный след, достигший определенного уровня совершенства, фиксируется. Дальнейшее научение может уже происходить без знания результатов. Их заменяет сравнение информации обратных связей с высокоточным и прочным перцептивным следом. Эта завершающая стадия названа двигательной.
|