Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Способы обеспечения и ускорения сходимости





1.Выбор начального распространения весов. Чтобы вывести сеть из равновесия перед обучением выполняют инициализация (заполнение) матрицы весов случайными значениями иначе все произведения от функции ошибки = 0.

Способы изменения весов: ▪ Классический подход (учитывая, что функция сигмоида имеет минимальные значения в интервале [-3;3], то случайные величины весов выбирают из интервала [-3/Ön;3/Ön], где n размерность сети во входном слое. ▪ Инициализация весов по прототипам, полученным из кластеров обучающего множества.

2.Обход локальных минимумов. Для достижения глобального мин поверхности ошибки используется ряд способов:

ü расширение размерности пространства весов за счет увеличения количества скрытых весов и повышения количества нейронов в скрытых слоях.

ü Эвристические подходы оптимизации. Например, использ генетического алгоритма.

3.Упорядочивание примеров. Множество примеров упорядочивают случайным образом («взбалтывание примеров»), что позволяет избавиться от случайно образованной тенденции. Если некоторые примеры представлены в недостаточном объеме, то их подают на сеть чаще остальных.

4. Пакетная обработка. Если модифицировать веса связей после кажд примера, то предъявление кажд класса может приводить к колебаниям сети. Пакетная обработка подразумевает изменение весов связи по усредненному значение по ряду примеров. Минимальная величина ошибки выполняется с помощью градиентных методов:

ü градиент общей ошибки вычисляется после просчета всего обучающего множества (эпохи) w(t+1)=w(t) – τ×¶E/¶W, где ¶E/¶W – градиент, τ - величиной градиентного шага, задается пользователем.

ü Стохастический градиентный метод. Пересчет выполняется после прохождения всего множества примеров, но используется часть частной производной ошибки для к-го множества. w(t+1)=w(t) – τ×¶E/¶Wк. Если в начале обучения брать небольшие пакеты примеров, а затем их увеличивать до общего количеств, то время обучения снижается, а сходимость к глобальному решению остается. Этот подход используется при большом количестве примеров или при большой их размерности.

5. Импульс. При определении направления поиска к текущему градиенту добавляется поправка – это вектор смещения с пред шага, взятый с некоторым коэффициентом , где μ определяется пользователем(»0,9<1). Этот метод чувствителен к способу упорядочивания примеров.

6. Управление величиной шага. При небольшом шаге процесс обучения будет медленней, а при большом – можно проскочить глобальный мин (что плохо). Потому величину шага постоянно снижает в процессе обучения. Если при определенном шаге ошибка сети уменьшилась, то шаг умножают на коэффициент >1 (это поощрение), если ошибка увеличилась то на <1 (наказание).

 

 







Дата добавления: 2015-10-19; просмотров: 662. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия