Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционные функции и когерентность излучения





Общетеоретические положения

Когерентность излучения. Понятие когерентности в оптике вводится для характеристики согласованности (корреляции) световых колебаний в различных точках пространства и в различные моменты времени. Определим степень когерентности посредством корреляционной функции светового поля.

Рассмотрим поляризованное поле, вектор напряженности электрического поля E которого колеблется в определенном направлении. Если вектор напряженности оптического поля содержит компоненту, случайным образом изменяющуюся по пространственным координатам r и по времени t, то можно построить следующую корреляционную функцию

где угловые скобки означают усреднение по всему пространству и по всему интервалу времени наблюдения. Для стационарных полей, статистические характеристики которых во времени не меняются,

Принято выделять также статистически однородные поля, для которых корреляционная функция зависит лишь от разности r2 - r1

Однородное случайное поле называется изотропным, если корреляционная функция зависит лишь от абсолютного значения расстояния между двумя точками s =|r2 − r1|. Для стационарных во времени и однородных в пространстве случайных полей

где τ = t2 − t1. Корреляционная функция B(s,τ) принимает максимальное значение при s = τ = 0.

Введем применительно к световому пучку нормированную корреляционную функцию

где I (r1,t1) и I (r2,t2) - интенсивности излучения в указанных пространственных точках и в указанные моменты времени. В случае стационарности поля светового пучка

Рис. 6.1. Корреляционная функция. Свойства

Построенную таким образом величину γ называют комплексной степенью когерентности, так как корреляционные функции в общем случае комплексны.

Абсолютную величину γ называют модулем степени когерентности или просто степенью когерентности. Степень когерентности всегда удовлетворяет неравенству

|γ| при τ = 0 дает значение степени пространственной когерентности, а при r2= r1 - значение степени временной когерентности. Значение s = sk и τ = τk, при которых степень пространственной и временной когерентности уменьшаются в заданное число раз называются соответственно размером зоны когерентности и временем когерентности.

Распространение взаимной когерентности. Распространение световых волн, функция взаимной когерентности

Пусть u(P,t) - скалярная амплитуда одной компоненты поляризации электрического или магнитного поля, связанная с монохроматическим оптическим сигналом (излучением). В соответствии с принятым в скалярной теории подходом, рассмотрим каждую компоненту независимо. Здесь Р - пространственная координата точки, а параметр t - момент времени.

Аналитический сигнал, связанный с u(P,t), имеет вид где ν - частота волны, а U(P,ν) - амплитуда фазора.

Пусть волна падает слева на неограниченную поверхность. Необходимо найти амплитуду фазора поля в точке Ро справа от поверхности Σ через характеристики поля на поверхности Σ.

В соответствии с принципом Гюйгенса-Френеля справедливо следующее решение

где λ = с /ν - длина волны излучения (с - скорость света); r - расстояние от точки Р1 до точки Р0; θ - угол между прямой линией, соединяющей Р0 и Р1, и нормалью к поверхности Σ; χ(θ) – коэффициент наклона, .

Как правило, рассмотрение большинства задач ведется в приближении малых углов наклона и поэтому в дальнейшем, мы будем считать этот множитель равным единице.

Принцип Гюйгенса-Френеля можно интерпретировать таким образом. Каждая точка на поверхности Σ действует как новый вторичный источник сферических волн. Напряженность поля вторичного источника в точке Р1 пропорциональна , и этот источник излучает с амплитудным коэффициентом направленности χ(θ).

Рис. 6.2. Схема распространения излучения

Функция взаимной когерентности. При распространении волны в пространстве ее структура изменяется. Изменяется соответственно и функция взаимной когерентности. Следовательно, можно говорить о распространении функции взаимной когерентности.

Причина эта объясняется тем фактом, что световые волны подчиняются волновому уравнению.

Рис. 6.3. Распространение функции взаимной когерентности

Решение, основанное на принципе Гюйгенса–Френеля. Рассмотрим распространение световой волны с произвольными свойствами когерентности.

Дана функция взаимной когерентности Γ(Ρ1, Ρ2;τ) на поверхности Σ1 и надо найти функцию взаимной когерентности Г(Q1,Q2;τ) на поверхности Σ2. То есть наша цель предсказать результаты интерференционного опыта Юнга на отверстиях Q1 и Q2 если известны результаты интерференционных опытов на всевозможных отверстиях Р1 и Р2.

По определению функция взаимной когерентности на поверхности Σ2

Рис. 6.4. Процесс распространения функции взаимной когерентности

Используя выражение для распространения узкополосного сигнала

,

запишем выражение для узкополосного сигнала для нашего случая для двух точек Q1 и Q2 поверхности Σ2

Подставив выражение для полей в функцию взаимной когерентности и изменяя порядок выполнения интегрирования и усреднения, получим

Среднее по времени в подынтегральном выражении может быть выражено через функцию взаимной когерентности на поверхности Σ 1, что приводит к основному закону распространения взаимной когерентности

В соответствии с условием квазимонохроматичности (Δω/ω<<1) оптическая разность хода должна быть намного меньше длины когерентности излучения.

Опираясь на это условие, найдем закон распространения излучения для взаимной интенсивности, заметив, что взаимная интенсивность

а также

Подставив это в выражение для распространения взаимной когерентности, при τ=0 получим

Это основное выражение, определяющее закон распространения взаимной интенсивности.

Распределение интенсивности на поверхности Σ 2 можно найти, устремив Q1 к Q2 (т.е. точки Q1 и Q2 должны совпасть) в последней формуле и заменив







Дата добавления: 2015-10-19; просмотров: 912. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия