Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Виды нагрузок и разновидности опор




Виды нагрузок

 

По способу приложения нагрузки делятся на

· сосредоточенные и

· распределенные.

Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной.

Часто нагрузка распределена по значительной площадке или ли­нии (давление воды на плотину, давление снега на крышу и т.п.), тогда нагрузку считают распределенной.

В задачах статики для абсолютно твердых тел распределен­ную нагрузку можно заменить равнодействующей сосредоточенной силой (рис. 6.1).

q — интенсивность на­грузки; I — длина стержня;

G = ql — равнодей­ствующая распределенной нагрузки.

Разновидности опор балочных систем (см. лекцию 1)

Балка — конструктивная деталь в виде прямого бруса, закреп­ленная на опорах и изгибаемая приложенными к ней силами.

Высота сечения балки незначительна по сравнению с длиной.

 

Жесткая заделка (защемление) (рис. 6.2)

 

Опора не допускает перемещений и поворотов. Заделку заменя­ют двумя составляющими силы Rax и и парой с моментом Mr.

Для определения этих неизвестных удобно использовать систему уравнений в виде

Каждое уравнение имеет одну неиз­вестную величину и решается без подста­новок.

Для контроля правильности решений используют дополни­тельное уравнение моментов относительно любой точки на балке, например

 

Шарнирно-подвижная опора (рис. 6.3)

Опора допускает поворот вокруг шарнира и перемещение вдоль опорной поверхности. Реакция направлена перпендикулярно опорной поверхности.

Шарнирно-неподвижная опора (рис. 6.4)

 

Опора допускает поворот вокруг шарнира и может быть заме­нена двумя составляющими силы вдоль осей координат.

 

Балка на двух шарнирных опорах (рис. 6.5)

 
 

Не известны три силы, две из них — вертикальные, следовательно, удобнее для определения неизвестных использовать систему уравнений во второй форме:

 

Составляются уравнения моментов относительно точек крепле­ния балки. Поскольку момент силы, проходящей через точку креп­ления, равен 0, в уравнении останется одна неизвестная сила.

Для контроля правильности решения используется дополни­тельное уравнение

 

При равновесии твердого тела, где можно выбрать три точки, не лежащие на одной прямой, удобно использовать систему уравнений в третьей форме (рис. 6.6):

 







Дата добавления: 2015-10-19; просмотров: 888. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.002 сек.) русская версия | украинская версия