Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Токсичность хладоагентов.





По степени безвредности хладоагенты принято делить на шесть классов. Чем выше класс, тем безвреднее хладоагент для человека.

1 класс. Сернистый ангидрид SO2. При его концентрации в воздухе от 0,5 до 1 % по объему смертельный исход наступает через 5 минут; поэтому он практически вышел из употребления.

2 класс. Аммиак NH3 и бромистый металл. При их концентрации в воздухе от 0,5 до 1 % по объему смерть наступает через 1 час.

3 класс. Метилформиат C2H4O2 из фреонов, например, R10, R20. При его концентрации в воздухе 2 – 2,5% по объему смерть наступает через 1 час.

4 класс. Дихлорэтилен C2H2Cl2, бромистый винил C2H3Br, R30, R160. Четвертый класс безопасности также имеет неазеотропная смесь R601, являющаяся при обычных температурах стабильным веществом, но при температуре выше 400ºС R601 может разлагаться с образованием высокотоксичных веществ, в том числе фтористого и хлористого водорода, а также фторфосгена. Для хладоагентов 4 класса при их концентрации по объему 2 – 2,5% вредное влияние сказывается через 2 часа.

Наиболее безопасные хладоагенты относятся к самым высоким классам безвредности – 5 и 6.

5 класс. Двуокись углерода СО2, фреоны R12, R113, R170, R290, R22, этилен С2Н4, бутан С4Н10. При объемной концентрации до 20% их вредное влияние сказывается более чем через 2 часа.

6 класс. Фреоны R12, R114. При их концентрации в воздухе свыше 20% по объему они не оказывают вредного влияния на человеческий организм в течении 2 часов.

Галогенные соединения, в которых все или большинство атомов водорода заменены атомами фтора, могут быть отнесены к еще более высокому классу безвредности. Такими агентами являются фреоны R13 CF3Cl, R14 CF4, R115 C2F5Cl.

Принятая классификация на 6 классов не позволяет дифференцировать фреоны в полной мере, поэтому наряду с классами для характеристики токсичности применяют понятие ПДК (предельно допустимая концентрация). ПДК, по сравнению со среднесмертельной концентрацией и другими критериями, более полно представляет токсические свойства. Однако, одного понятия ПДК не достаточно для оценки реальной опасности работы с хладоагентами в производственных условиях. Так, для R11 и R12B1 одинаковая ПДК (равная 1000 мг/м3) не означает, что токсическая опасность их одинакова. В случае разгерметизации аппаратуры с R12B1, имеющим давление насыщенного пара при 20ºС около 230 КПа и плотность 17 кг/м3, этот холодильный агент попадает в воздух рабочей зоны быстрее и в большем количестве, чем R11 с давлением насыщенного пара, равным при той же температуре 90 КПа, и плотностью 5,2 кг/м3. Для оценки опасности отравления в условиях применения того или иного вещества введено понятие токсической опасности, которая характеризуется коэффициентом возможного ингаляционного отравления (КВИО). Этот коэффициент определяется отношением максимально допустимой концентрации пара при 20ºС к среднесмертельной дозе для мышей при экспозиции 2 часа.

Учитывая условность и ограниченность среднесмертельной концентрации как параметра токсического воздействия на человека, целесообразно характеризовать реальную опасность хладоагента в производственных условиях коэффициентом токсической опасности (КТ.О.). Этот коэффициент представляет собой безразмерную величину, определяемую отношением плотности ρ20 к ПДК, установленной для воздуха рабочей зоны:

 

 

Коэффициент токсической опасности показывает, во сколько раз может быть превышен ПДК при аварийной ситуации в реальных производственных условиях. Чем больше КТ.О., тем более строгими должны быть меры предосторожности при работе с хладоагентами. В таблице 3 для ряда хладоагентов приведены установленные и утвержденные ПДК и КТ.О.. Оценку величины КТ.О. можно произвести по формуле:

 

,

 

где р20 – давление насыщенного пара при 20º С в КПа;

М=Мr. 10-3 – молярная масса агента в кг/моль;

Mr – относительная молекулярная масса агента;

ПДК – предельная допустимая концентрация, выраженная в мг/м3.

 

Таблица 4. Токсичность хладоагентов

 

Холодильный агент ПДК, мг/м К . 10 Холодильный агент ПДК, мг/м К *10
R11 R12 R12В1 R21 R22 R113 R114 R115     R142 R143 R152 RС318 R500 R502 R717      






Дата добавления: 2015-10-18; просмотров: 595. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия