Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Эксергетический баланс системы.





 

Схема баланса эксергии ТТ показана на рис. 17.

 

 

Рис. 17.

 

Эксергия в систему может быть подведена и выведена в виде работы L, эксергии тепла Exq и эксергии потока Exh рабочего тела. Т.к. в реальных условиях часть энергии рассеивается и переходит в неработоспособную форму, то разность значений эксергии на входе и выходе системы определяет потери от необратимых процессов в системе: D – сумма потерь эксергии в системе. Т.о., в отличие от энергии, часть эксергии может полностью уничтожаться. Эксергетический баланс системы, в самом общем виде, может быть представлен уравнением:

 

(L+ Exq+ Exh)ВХ = (L+ Exq+ Exh)ВЫХ + D (4)

 

ТТ не предназначены для производства (LВЫХ = 0) работы и если напрямую работа к ТТ не подводится (LВХ = 0), то потери эксергии при диссипации для реальных систем:

 

D = ExВХ - ExВЫХ 0 (5)

 

Только в идеальных ТТ с полностью обратимыми процессами D=0 и ExВХ = ExВЫХ. Здесь эксергия ведет себя аналогично энтропии, рост которой ( S > 0) в замкнутой системе, также отражает потери от необратимости, но выгодно отличается тем, что уменьшение эксергии сразу дает значение потерь организованной энергии.

Для оценки степени приближения процесса в тепловых аппаратах к идеальному обратимому, служит эксергетический КПД .

- характеризует степень приближения реального теплового процесса к идеальному обратимому процессу.

Применительно к тепловым машинам не производящим полезной работы эксергетический КПД определяется как отношение эксергии отводимой от системы, к подведенной эксергии*

 

= (6)

 

Учитывая соотношение (5):

 

= =1- (6 / )

 

 

В реальных тепловых процессах < 1, в идеальном = 1.

Потери эксергии D бывают двух видов:

1) внутренние потери D , связанные с необратимостью процессов протекающих внутри системы.

В ТТ это потери: на дросселирование, гидравлическое сопротивление, трение в узлах, потери тепло – и массообмена.

2) внешние потери D , связанные с условиями взаимодействия системы с окружающей средой, а также источниками и приемниками энергии (потери на теплопередачу).

Эти потери связаны с отличием температуры рабочего тела от температуры теплоотдатчика и теплоприемника, потери через теплоизоляцию. В квазициклах часть эксергии уносится потоком рабочего тела, выбрасываемого из установки**.

Для стационарных процессов уравнение (5) можно переписать в виде:

 

D + D = Ex - Ex (5 /)

 

_______________________________

* Для тепловых двигателей эксергетический КПД определяется как величина равная отношению произведенной полезной работы к разности эксергий на его входе и выходе

 

=

 

** Внутренние и внешние потери можно рассчитать по отдельности с помощью уравнения (5). Если в нем значения эксергии взяты по параметрам установки, то полученные потери будут внутренними потерями D , если значениям эксергии соответствуют величины получаемые от внешних источников и отдаваемые внешним приемникам, то D включает и внешние и внутренние потери.

Уравнения (5) и (5 ) можно применять и к отдельным элементам ТТ, определяя распределение в них потерь.

 







Дата добавления: 2015-10-18; просмотров: 770. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия