Студопедия — Определенный интеграл, его свойства и геометрический смысл
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определенный интеграл, его свойства и геометрический смысл






Пусть функция определена на отрезке Произведем разбиение (см. Р5)

отрезка на частичные отрезки и выберем произвольно точки Вычислим значения

и составим так называемую интегральную сумму

Определение 3. Если существует конечный предел интегральных сумм:

и если этот предел не зависит от вида разбиения и выбора точек то его называют определенным интегралом от функции на отрезке Обозначение: При этом саму функцию называют интегрируемой на отрезке

(заметим, что число называется диаметром разбиения ).

Пусть теперь функция По разбиению строится ступенчатая фигура (см. Р6), состоящая из прямоугольников высоты и длиной основания, равной Площадь этой ступенчатой фигуры (достройте ее самостоятельно) равна интегральной сумме и эта площадь будет приближенно равна площади криволинейной трапеции[3] т.е. причем это равенство будет тем точнее, чем меньше диаметр разбиения и оно становится точным при

Мы пришли к следующему геометрическому смыслу определенного интеграла:

интеграл численно равен площади криволинейной трапеции с верхней границей, описываемой уравнением

Замечание 3. В определении 3 интеграла предполагается, что отрезок интегрирования ориентирован от до (т.е. ). В случае противоположной ориентации отрезка

(т.е. при ) полагаем по определению Также полагаем по определению, что

Перейдем к формулировке свойств определенного интеграла.

Ограниченность подынтегральной функции. Если функция интегрируема на отрезке то она ограничена на этом отрезке (т.е. ).

Линейность интеграла. Если функции и интегрируемы на отрезке то на этом отрезке интегрируема и любая их линейная комбинация и имеет место равенство

Аддитивность интеграла. Если функция интегрируема на максимальном из отрезков то она интегрируема и на двух других отрезках, причем имеет место равенство

Далее везде предполагаем, что

Монотонность интеграла. Если функции и интегрируемы на отрезке и то

Интегрируемость модуля. Если функции интегрируема на отрезке то на этом отрезке интегрируема и функция причем имеет место неравенство

Теорема о среднем для интеграла. Пусть функция непрерывна на отрезке Тогда существует точка такая, что (геометрический смысл этой теоремы состоит в том, что существует прямоугольник с основанием и высоты равновеликий криволинейной трапеции ) .

Доказательство. Пусть (по теореме Вейерштрасса значения и функцией достигаются). Имеем поэтому из свойства монотонности интеграла отсюда получаем

Последние неравенства показывают, что значение является промежуточным для функции на отрезке а, значит, по теореме Больцано-Коши существует такое, что

Теорема доказана.

Лекция 6. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница. Замена переменных и интегрирование по частям в определенном интеграле. Интегрирование дробно-рациональных функций

Вычисление определенного интеграла можно свести к вычислению неопределенного. Соответствующая формула носит название формулы Ньютона-Лейбница. Для ее вывода необходимо изучить сначала свойства интеграла с переменным верхним пределом, к описанию которого мы переходим.

 







Дата добавления: 2015-12-04; просмотров: 189. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия