Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Виды средних величин и методы их расчета





При анализе статистич. инф-и, хар. различные аспекты развития внеш торговли, важное место занимают средние стат показатели. Средняя величина - один из распр. способов обобщений колич. показателей. Это показатель, хар. качественно однородную сов-ть исслед явления внеш торговли и отражающий уровень одного из исслед. признаков.

Признак, по кот. находится средняя величина, наз. осредняемым.

Виды сред. величин:

- Структурные – дает общую хар-ку структуры сов-ти: Мо, Ме.

- Суммарная - сглаживает различий в величине признака.

Сущ различные средние:

- средняя арифметическая;

- средняя геометрическая;

- средняя гармоническая;

- средняя квадратическая.

1) Ср. арифм. - наиб распростр. вид средней. Исп-ся для обобщенной хар-ки абс. величин.

- Простая - если каждое значение признака в ряду распред-я встречается по 1 разу, то сумма всех значений, дел. на число этих значений.

x1,x2,…,xn - значения признака (например, цена товара); n - количество значений.

- Взвешенная - если одно и то же значение признака встречается неск-ко раз: где xi - значение признака (цена товара), f i - частота повторения этого признака (вес товара).

2) Ср. гармонич. – для обобщенной хар-ки относит. величин.

- Простая

- Взвешенная , где fi – частота признака; xi варианта.

3) Ср. геометр. - для хар-ки относит. величин.

1) Простая: , где x1….xn – значения показателя (н-р, темпа роста).

2) Взвешенная: , где x1….xn – значения показателя (н-р, темпа роста), f1…fn - частота признака. В тамож. статистике средняя геометрическая, главным образом, используется для исчисления среднего темпа роста.

4) Ср. квадратическая – для обобщ. хар-ки абсю величин (ошибок)

- Простая

- Взвешенная.

 







Дата добавления: 2015-12-04; просмотров: 227. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия