Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос – изменение стоимости денежных единиц во времени. Операции накопления и дисконтирования.





 

Одна и та же денежная сумма относящаяся к разным промежуткам времени имеет разную стоимость и ценность. Это объясняется существованием инфляции, ставкой дохода на капитал, инвестиционными рисками(Любое направление инвестирования характеризуется определенными рисками. Безрискового инвестирования нет. Инвестор может потерять денежную сумму, вложенную в проект и не получить доходы, на которые он рассчитывал) и психологические предпочтения людей(Обычно считается что человек выберет определенную денежную сумму сумму сегодня чем точно такую же в будущем. За ожидание человек обычно хочет получить дополнительный доход, который также будет описываться ставкой дохода на капитал).

Для управления финансами предприятия необходимо производить операции (Сравнение, сложение, расчет разницы) с денежными суммами которые относятся к разным моментам времени. Так как ценность этих сумм не одинаковая – их нельзя сравнивать, складывать и отнимать без дополнительных операций. Все эти денежные суммы необходимо приводить к одному и тому же моменту времени. Эти действия можно производить с помощью операций накопления и дисконтирования.

Накопление – расчет бедующей стоимости известной на настоящий момент денежной суммы. Дисконтирование – операция обратная операции накопления – определение настоящей (текущей, приведенной, сегодняшней) стоимости известной в будущем денежной суммы.

В обеих операциях используется процентная ставка, которая в операции накопления называется ставкой дохода на капитал, а в операции дисконтирования – ставка дисконта.

2.Вопрос. Простой и сложный процент.

Накопление денежной суммы может происходить по схеме простого и сложного процента. Простой процент- подразумевает что проценты начисляются все время на одну и ту же первоначальную (основную) сумму. При сложном проценте – проценты начисляются на увеличенную за счет начисленных за предыдущие периоды проценты сумму.

Накопление по схеме простого и сложного процента

Пусть первоначальная сумма равна 1 ден.ед. А процент равен i

ГОД Показатели
Сумма на начало года Начисленный процент Сумма на конец года
Простой Сложный Простой Сложный Простой Сложный
1 год 1 1 i i 1+i 1+i
2 год 1+i 1+i i i*(1+i) 1+2i (1+i)2

FV=(1+i)n – Future value при PV (Present Value) = 1 ден.ед.

При PV не равной 1 ден.ед FV=PV*(1+i)n n – количество лет

Это функция накопления а функция дисконтирования

где I – ставка дисконта, а n – количество лет

3.Вопрос.Более частое накопление. Номинальное, периодическое и эффективная ставка процента.

В финансовых отчетах начисление процентов может происходить чаще одного раза в год. При этом необходимо:

1)Рассчитать Периодическую ставку процента

, где i- номинальная ставка, а m- количество периодов начисления процентов в году.

2) Увеличить число периодов начисления процентов(накопления) в m раз.

M*n

Тогда =>

FV=PV*(1+1/n)m*n

Эффективная ставка процента – действительная ставка по которой начисляется доход за один год.

PV (Текущая стоимость)=1000

FV (Будущая стоимость)=1100

Iэф=

Задача: Рассчитать эффективную ставку, если номинальная 12%. Начисление производится

1) 2 раза в год

2) Раз в квартал

3) Каждый месяц

4)Каждый день

1) iэф =

2)iэф=

3)iэф=

4)iэф=

!!! Рост ограничен e^(i*n)

Правило 72

Выводится на основании натуральных логарифмов. Действует в промежутке 3%-18%.

Если вы хотите узнать за сколько лет сумма которую вы положите в банк удвоится необходимо 72/целочисленное значение процентов под которые вы положили деньги в банк. Верно также и обратное. Чтобы рассчитать процент, под которые необходимо положить деньги в банк, чтобы сумма удвоилась за нужное количество лет – нужно 72/ данное количество лет.

Текущая стоимость аннуитета

Аннуитет – поток из n равных платежей, каждый из которых происходит в конце периодического интервала. Текущая его стоимость – стоимость этого потока платежей на сегодняшний момент времени.

Ден.Ед


PMT


Поток n равных платежей

 


Поток платежей

Текущая неизвестная стоимость аннуитета

Для вывода формулы расчета ТСА предположим, что PMT=1 ден.ед.

Для вывода формулы необходимо:

1)Оценить текущую стоимость каждого платежа отдельно;

2)Найти сумму этих текущих стоимостей.

Находим текущую стоимость первого платежа:

Второго

/…/

Получаем прогрессию:

q=1/(1+i)

S=(an*q-a1)/(q-1)

Если платеж не равен единице то

An=







Дата добавления: 2015-12-04; просмотров: 268. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия