Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства пределов.бесконечно больш и малые.Свойства бесконечно малых и бесконечно больших величин и связь между ними





Пусть f 1 (x) и f 2 (x) бесконечно малые величины при ,
т.е. и .

1. Сумма (разность) бесконечно малых величин есть величина бесконечно малая:

. (4.17)

2. Произведение бесконечно малых величин есть величина бесконечно малая:

. (4.18)

3. Произведение бесконечно малой величины на константу С или на функцию, имеющую конечный предел , есть величина бесконечно малая:

. (4.19)

Пусть и бесконечно большие величины при ,
т.е. и .

1. Сумма бесконечно больших величин есть величина бесконечно большая:

.

2. Произведение бесконечно больших величин есть величина бесконечно большая:

. (4.21)

3. Произведение бесконечно большой величины на константу С, или на функцию, имеющую конечный предел , есть величина бесконечно большая:


41.замечательные пределы. Замеча́тельные преде́лы — термин, использующийся в советских и российских учебниках по математическому анализу для обозначения некоторых широко известных математических тождеств со взятием предела. Особенно известны: Первый замечательный предел: Второй замечательный предел: Первый замечательный предел

Доказательство Рассмотрим односторонние пределы и и докажем, что они равны 1.Пусть . Отложим этот угол на единичной окружности ().Точка K — точка пересечения луча с окружностью, а точка L — с касательной к единичной окружности в точке . Точка H — проекция точки K на ось OX. Очевидно, то: (1)(где — площадь сектора

(из : )

Подставляя в (1), получим:

Так как при : Умножаем на : Перейдём к пределу:

Найдём левый односторонний предел:

Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.








Дата добавления: 2015-12-04; просмотров: 155. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия