Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Передаче и реализации наследственной информации. Сперматогенез и овогенез, сравнительная характеристика.





Мужские половые кл.

Образуются в течение всего активного полового периода в больших количествах. Продолжительность развития зрелых сперматозоидов из родоначальных кл- сперматогоний- составляет около 72 дней. Подвижность сперматозоидов обусловлена наличием жгутиков. Скорость движения- 30-50 мкм/с. Целенаправленному движению способствует хемотаксис (движение к химическому раздражителю или от него) и реотаксис (движение против тока жидкости). Спермии сохраняют оплодотворяющую способность в течение 2 суток.

Сперматозоиды (спермии), длиной около 70 мкм, имеют головку и хвост. Покрыт цитолеммой, которая в переднем отделе содержит рецептор- гликозилтрансферазу, обеспечивающую узнавание рецепторов яйцеклетки. Головка сперматозоида включает небольшое плотное ядро с гаплоидным набором хромосом, содержащее нуклеопротамины и нуклеогистоны. Передняя половина ядра покрыта плоским мешочком, составляющим чехлик сперматозоида. В нем располагается акросома, содержащая набор ферментов (гиалуронидазы и протеазы), способные растворять при оплодотворении оболочки, покрывающие яйцеклетку. Чехлик и акросома являются производными комплекса Гольджи. В ядре содержится 23 хромосомы, одна из которых является половой, а остальные- аутосомами. За головкой имеется кольцевидное сужение, переходящее в хвостовой отдел. Хвостовой отдел состоит из промежуточной, главной и терминальной частей. В связующей части (шейке) располагаются центриоли- проксимальная, прилежащая к ядру, и дистальная, от которой начинается осевая нить, продолжающаяся в промежуточной, главной и терминальной частях. Помежуточная часть содержит 2 центральных и 9 пар периферических микротрубочек, окруженных расположенной по спирали митохондрией (митохондриальное влагалище). В каждой паре периферических микротрубочек одна имеет законченное строение и содержит 13 филаментов, тогда как другая имеет S-образное строение и только 11 филаментов, образованных белком тубулином. От микротрубочек отходят парные выступы, состоящие из белка динеина, обладающего АТФазной активностью. Динеин расщепляет АТФ, вырабатываемую митохондриями, окружающими аксонему, и преобразует химическую энергию в механическую, за счет которой осуществляется движение спермия. Главная часть хвоста по строению напоминает ресничку с характерным набором микротрубочек в аксонеме (9х2)+2, окруженных циркулярно ориентированными фибриллами и плазмолеммой. Терминальная часть содержит единичные сократительные филаменты.

Женские половые кл.

У женщины в течение полового цикла созревает, как правило, 1 яйцеклетка. За детородный период образуются около 400 зрелях яйцеклеток. Выход овоцита из яичника- овуляция. Вышедший из яичника овоцит окружен венцом фолликулярных кл. он подхватывается бахромками маточной трубы и продвигается по ней. Здесь заканчивается созревание половой кл. яйцеклетка имеет шаровидную форму, больший, чем у спермия, объем цитоплазмы, не обладает способностью самостоятельно передвигаться. Классификаия яйцеклеток основывается на признаках наличия, количества и распределения желтка, представляющего собой белково-липидное включение в цп, используемое для питания зародыша. Различают безжелтковые (алецитальные), маложелтковые (олиголецитальные), среднежелтковые (мезолецитальные), жногожелтковые (полилецитальные). Маложелтковые подразделяются на первичные и вторичные. Как правило, в маложелтковых яйцеклетках желточные включения распределены равномерно- изолецитальные. Яйцеклетка человека вторично изолецитального типа.

Яйцеклктка имеет диаметр 130 мкм. К цитолемме прилежат блестящая (прозрачная) зона и далее слой фолликулярных кл. ядро имеет гаплоидный набор с Х-половой хромосомой. В желточном ядре идет интенсивный синтез желтка. На периферии цп располагаются кортикальные гранулы, содержащие гликозаминогликаны и различные ферменты, участвующие в кортикальной реакции, защищая яйцеклетку от полиспермии. Из включений ооплазмы особого внимания заслуживают желточные гранулы, содержащие белки, фосфолипиды и углеводы. Каждая гранула желтка окружена мембраной, имеет плотную центральную часть, состоящую из фосфовитина, и более рыхлую периферическую часть, состоящую из липовителлина. Белки фосфовитин и липо вителлин синтезуруются в ЭПС и, расщепляясь ферментами лизосом (катепсин), используются для питания. Прозрачная зона состоит из гликопротеинов и гликозаминогликанов- хондроитинсерной, гиалуроновой и сиаловой кислот. Цитолемма яйцеклетки имеет микроворсинки, располагающиеся между отростками фолликулярных кл, выполняющих трофическую и защитную функции.

Сперматогенез.

Образование мужских половых клеток (сперматогенез) протекает в извитых семенных канальцах и включает 4 последовательные стадии или фазы: размножение, рост, созревание и формирование.

Начальной фазой сперматогенеза является размножение сперматогоний, занимающих наиболее периферическое (базальное) положение в сперматогенном эпителии. Согласно современным представлениям, среди сперматогоний можно выделить два типа клеток: 1) стволовые сперматогонии типа А, которые подразделяются на две субпопуляции: долгоживущие, резервные стволовые клетки и быстро обновляющиеся полустволовые клетки, которые делятся один раз в течение цикла сперматогенного эпителия, 2) дифференцирующиеся сперматогоний типа А и типа В.

Стволовые клетки расположены в базальной части канальца изолированно от других сперматогоний. Морфологически в популяции стволовых А-сперматогоний различают светлые и темные клетки. Для обоих клеток характерно преобладание в ядрах деконденсированного хроматина и расположение ядрышек около ядерной оболочки. Однако в темных клетках типа А степень конденсации хроматина большая, чем в светлых клетках. Темные клетки относят к «резервным» медленно обновляющимся стволовым клеткам, а светлые — к полустволовым быстро обновляющимся клеткам. Для стволовых клеток характерно наличие овальных ядер с диффузно распределенным хроматином, одного или двух ядрышек, большое содержание в цитоплазме рибосом и полисом, малое количество других органелл. Часть стволовых клеток типа А при делении не завершают цитокинез и остаются соединенными цитоплазматическими мостиками, т.е. образуют синцитий. Появление таких спаренных сперматогоний свидетельствует о начале процессов дифференцировки мужских половых клеток. Дальнейшее деление таких клеток приводит к образованию цепочек или групп сперматогоний, соединенных цитоплазматическими мостиками. Клетки типа В имеют более крупные ядра, хроматин в них не дисперсный, а собран в глыбки. В следующий период (период роста) сперматогонии перестают делиться митозом, увеличиваются в объеме и вступают в первое деление мейоза. Это начало их дифференцировки в сперматоциты 1-го порядка, и начало уже третьего периода – периода созревания. Синцитиальные группы сперматогоний начинают перемещаються в адлюминальную зону сперматогенного эпителия. В первом делении мейоза в клетках происходит конъюгация гомологичных хромосом и кроссинговер. В каждой из двух дочерних клеток — сперматоцитов 2-го порядка содержится гаплоидное число хромосом (23 у человека).

Второе деление созревания начинается сразу вслед за первым, и происходит как обычный митоз без редупликации хромосом. В анафазе второго деления созревания диады сперматоцитов второго порядка разъединяются на монады, или одиночные хроматиды, расходящиеся к полюсам. В результате сперматиды получают столько же монад, сколько было диад в ядрах сперматоцитов второго порядка, т.е. гаплоидное число. Сперматоциты 2-го порядка имеют меньшие размеры, чем сперматоциты 1-го порядка, и располагаются в средних и более поверхностных слоях эпителиосперматогенного слоя. Таким образом, каждая исходная сперматогония дает начало 4 сперматидам с гаплоидным набором хромосом. Сперматиды больше не делятся, но путем сложной перестройки превращаются в зрелые сперматозоиды. Эта трансформация составляет четвертую фазу сперматогенеза — период формирования, или спермиогенеза. Сперматиды представляют собой небольшие округлые клетки со сравнительно крупными ядрами. Скапливаясь около верхушек поддерживающих клеток, сперматиды частично погружаются в их цитоплазму, что создает условия для формирования сперматозоидов из сперматид. Ядро сперматиды постепенно уплотняется и уплощается. В сперматидах около ядра располагаются аппарат Гольджи, центросома и скапливаются мелкие митохондрии. Процесс формирования сперматозоида начинается с образования в зоне аппарата Гольджи уплотненной гранулы — акробласта, прилежащего к поверхности ядра. В дальнейшем акробласт, увеличиваясь в размерах, в виде шапочки охватывает ядро, а в середине акробласта дифференцируется уплотненное тельце. Такую структуру называют акросомой. Она лежит в том конце трансформирующей сперматиды, который обращен к поддерживающей клетке. Центросома, состоящая из двух центриолей, перемещается в противоположный конец сперматиды. Проксимальная центриоль прилегает к поверхности ядра, а дистальная разделяется на две части. От передней части дистальной центриоли начинает формироваться жгутик, который затем становится осевой нитью развивающегося сперматозоида. Задняя же половина дистальной центриоли принимает вид колечка. Смещаясь вдоль жгутика, это колечко определяет заднюю границу средней или связывающей части сперматозоида. Цп по мере роста хвоста сползает с ядра и сосредоточивается в связующей части. Митохондрии располагаются спиралеобразно между проксимальной центриолью и колечком. Цп сперматиды во время ее превращения в спермий сильно редуцируется. В области головки она сохраняется только в виде тонкого слоя, покрывающего акросому; небольшое количество цитоплазмы остается в области связующего отдела и, наконец, она очень тонким слоем покрывает жгутик. Часть цитоплазмы сбрасывается и распадается в просвете семенного канальца либо поглощается поддерживающими клетками. Кроме того, эти клетки вырабатывают жидкость, накапливающуюся в просвете извитого семенного канальца. В эту жидкость попадают, высвобождаясь из верхушек поддерживающих клеток, сформировавшиеся сперматозоиды и вместе с ней уходят в дистальные части канальца.

Процесс сперматогенеза в целом длится у человека около 75 сут, но протекает на протяжении извитого семенного канальца волнообразно. Поэтому на каждом отрезке канальца имеется определенный набор клеток сперматогенного эпителия.

Эпителиосперматогенный слой чрезвычайно чувствителен к повреждающим действиям. При различных интоксикациях, авитаминозах, недостаточности питания и других условиях (особенно при воздействии ионизирующим излучением) сперматогенез ослабляется или даже прекращается, а сперматогенный эпителий атрофируется. Аналогичные деструктивные процессы развиваются при крипторхизме (когда семенники не опускаются в мошонку, оставаясь в брюшной полости), длительном пребывании организма в среде с высокой температурой, лихорадочных состояний и особенно после перевязки или перерезки семявыводящих каналов. Деструктивный процесс при этом поражает в первую очередь формирующиеся сперматозоиды и сперматиды. Последние набухают, нередко сливаются в характерные округлые массы — так называемые семенные шары, плавающие в просвете канальца. Так как нижние слои сперматогенного эпителия (сперматогонии и сперматоциты 1-го порядка) при этом сохраняются более длительно, то восстановление сперматогенеза после прекращения действия повреждающего агента иногда оказывается возможным.

Деструкция, описанная выше, ограничивается только сперматогенным слоем. Поддерживающие клетки в указанных обстоятельствах сохраняются и даже гипертрофируются, а гландулоциты часто увеличиваются в количестве и образуют большие скопления между запустевающими семенными канальцами.

Овогенез.

Овогенез отличается от сперматогенеза рядом особенностей и проходит в три стадии: размножения; роста; созревания.

Первая стадия — период размножения оогониев — осуществляется в период внутриутробного развития, а у некоторых видов млекопитающих и в первые месяцы постнатальной жизни, когда в яичнике зародыша происходит деление оогониев и формирование первичных фолликулов. Период размножения завершается вступлением клетки в мейоз, - началом дифференцировки в овоцит 1-го порядка. Мейотическое деление останавливается в профазе, и на этой стадии клетки сохраняются до периода полового созревания организма.

Вторая стадия — период роста — протекает в функционирующем зрелом яичнике (после полового созревания девочки) и состоит в превращении овоцита 1-го порядка первичного фолликула в овоцит 1-го порядка в зрелом фолликуле. В ядре растущего овоцита происходят конъюгация хромосом и образование тетрад, а в их цитоплазме накапливаются желточные включения.

Третья (последняя) стадия — период созревания — начинается образованием овоцита 2-го порядка и завершается выходом его из яичника в результате овуляции. Период созревания, как и во время сперматогенеза, включает два деления, причем второе следует за первым без интеркинеза, что приводит к уменьшению (редукции) числа хромосом вдвое, и набор их становится гаплоидным. При первом делении созревания овоцит 1-го порядка делится, в результате чего образуются овоцит 2-го порядка и небольшое редукционное тельце. Овоцит 2-го порядка получает почти всю массу накопленного желтка и поэтому остается столь же крупным по объему, как и овоцит 1-го порядка. Редукционное же тельце представляет собой мелкую клетку с небольшим количеством цитоплазмы, получающую по одной диаде хромосом от каждой тетрады ядра овоцита 1-го порядка. При втором делении созревания в результате деления овоцита 2-го порядка образуются одна яйцеклетка и второе редукционное тельце. Первое редукционное тельце иногда тоже делится на две одинаковые мелкие клетки. В результате этих преобразований овоцита 1-го порядка образуются одна яйцеклетка и два или три редукционных (т.н. полярных) тельца.

Стадия формирования — в отличие от сперматогенеза, в овогенезе отсутствует.

Гоноциты, мигрирующие из первичной эктодермы через энтодерму желточного мешка в половые валики, трансформируются при половой дифференцировке гонад в оогонии в яичниках. По мере прохождения периода размножения, после многократного деления митозом оогонии вступают в следующий этап дифференцировки половой клетки — ооцит 1-го порядка, в котором происходят важные биологические явления, специфические для половых клеток — конъюгация гомологических родительских хромосом и кроссинговер — обмен участками между хромосомами. Эти процессы происходят в ооцитах 1-го порядка, находящихся в профазе I деления мейоза. В отличие от сперматогенеза прохождение ооцитами 1-го порядка стадий профазы 1 мейоза у большинства видов млекопитающих и человека имеет место в антенатальном периоде. Подобно соматическим клеткам, гоноциты, оогонии и ооциты 1-го порядка на стадиях профазы I деления мейоза содержат диплоидный набор хромосом. Оогония превращается в ооцит 1-го порядка с момента, когда она заканчивает период размножения и входит в период малого роста.

Морфологические перестройки хромосом и ядер в ооцитах при их переходе от одной стадии профазы I деления мейоза в другую аналогичны приведенным для сперматоцитов. В отличие от сперматоцитов на стадии диплотены ооциты в диплотене вовлекаются в формирование фолликула. Именно после этой стадии профазы I деления мейоза ооциты участвуют в последовательных стадиях развития фолликулов. Ооциты в диплотене, заключенные в первичные фолликулы, составляют пул половых клеток, из которого непрерывно часть их вступает в период большого роста. В ооцитах, покинувших пул первичных фолликулов и вступивших в период большого роста, происходит активный синтез р- и иРНК и белка, использующихся не только для роста ооцита, но главным образом на первых этапах развития дробящегося эмбриона. Лишь некоторые из вступивших в рост ооцитов и фолликулов достигают преовуляторного размера, созревают и вступают в метафазу второго деления созревания и могут быть оплодотворены.

Следует отметить, что большинство ооцитов в растущих и созревающих фолликулах в разные периоды своего роста претерпевают атрезию. Завершающие этапы периода большого роста ооцита и фолликула, созревания и овуляции происходят циклически и зависят от циклической деятельности системы гипофиз—гипоталамус—яичники.

В начале большого роста фолликулярные клетки, ранее располагавшиеся в виде одного слоя уплощенных клеток, приобретают призматическую форму, делятся путем митоза и фолликулярный эпителий становится многослойным, получая название зернистой зоны (zona granulosa). Среди фолликулярных клеток преовуляторного фолликула различают «темные» и «светлые» клетки. Однако происхождение и значение их остается неясным.

Женские половые клетки, так же как и мужские, в определенной степени отделены от микроокружения гематофолликулярным барьером, который создает оптимальные условия для метаболизма овоцитов. Он состоит из соединительной ткани (теки), сосудов микроциркуляторного русла, базальной мембраны, фолликулярного эпителия и блестящей зоны.

Овуляция. Наступление овуляции — разрыва фолликула и выброса овоцита 2-го порядка в брюшную полость — вызывается действием гипофизарного лютеинизирующего гормона (лютропина), когда выделение его гипофизом резко увеличивается. В предовуляторной стадии происходит выраженная гиперемия яичника, повышение проницаемости гематофолликулярного барьера с последующим развитием интерстициального отека, инфильтрацией стенки фолликула сегментоядерными лейкоцитами. Объем фолликула и давление в нем быстро возрастают, стенка его резко истончается. В нервных волокнах и терминалях обнаруживается в этот период наивысшая концентрация катехоламинов. Известную роль в овуляции может играть окситоцин. Перед наступлением овуляции секреция окситоцина увеличивается в ответ на раздражение нервных окончаний (располагающихся во внутренней оболочке), обусловленное повышением внутрифолликулярного давления. Кроме того, истончению и разрыхлению фолликула способствуют протеолитические ферменты, а также взаимодействие гиалуроновой кислоты и гиалуронидазы, находящихся в его оболочке.

Овоцит 2-го порядка, окруженный фолликулярным эпителием, из брюшной полости попадает в воронку и далее в просвет маточной трубы. Здесь (при наличии мужских половых клеток) быстро происходит второе деление созревания и образуется зрелая яйцеклетка, готовая к оплодотворению.

Атрезия фолликулов. Значительное число фолликулов не достигает стадии зрелости, а претерпевает атрезию — своеобразную перестройку деструктивного характера. Атрезия овоцитов начинается с лизиса органелл, кортикальных гранул и сморщивания ядра. При этом блестящая зона утрачивает свою шаровидную форму и становится складчатой, утолщается и гиалинизируется. Одновременно атрофируются и клетки зернистого слоя, а интерстициальные клетки оболочки при этом не только не погибают, но, наоборот, усиленно размножаются и, гипертрофируясь, начинают напоминать по форме и виду лютеиновые клетки желтого тела, находящиеся в расцвете. Так возникает атретическое тело, внешне несколько напоминающее желтое тело, но отличающееся от последнего наличием в центре блестящей зоны овоцита.

В ходе дальнейшей инволюции атретических тел на их месте остаются скопления интерстициальных клеток.

Обильная иннервация атретических тел, а также увеличение содержания рибонуклеопротеидов и липидов в гипертрофирующихся интерстициальных клетках и возрастание активности ряда ферментов в них свидетельствуют о повышении метаболизма и высокой функциональной активности атрезирующихся фолликулов. Так как интерстициальные клетки участвуют в выработке овариальных гормонов, следует допустить, что атрезия, результатом которой является увеличение количества этих клеток, необходима для гормонообразования в яичнике женщины.

Желтое тело

Под влиянием избытка лютеинизирующего гормона, вызвавшего овуляцию, элементы стенки лопнувшего зрелого пузырька претерпевают изменения, приводящие к формированию желтого тела — временной добавочной эндокринной железы в составе яичника. При этом в полость запустевшего пузырька изливается кровь из сосудов внутренней оболочки, целость которых нарушается в момент овуляции. Сгусток крови быстро замещается соединительной тканью в центре развивающегося желтого тела.

В развитии желтого тела различают 4 стадии:

пролиферации;

железистого метаморфоза;

расцвета;

инволюции.

В первой стадии — пролиферации и васкуляризации — происходит размножение эпителиоцитов бывшего зернистого слоя и между ними интенсивно врастают капилляры из внутренней оболочки. Затем наступает вторая стадия — железистого метаморфоза, когда клетки фолликулярного эпителия сильно гипертрофируются и в них накапливается желтый пигмент (лютеин), принадлежащий к группе липохромов. Такие клетки называются лютеиновыми или лютеоцитами. Объем новообразующегося желтого тела быстро увеличивается, и оно приобретает желтый цвет. С этого момента желтое тело начинает продуцировать свой гормон — прогестерон, переходя таким образом в третью стадию — расцвета. Продолжительность этой стадии различна. Если оплодотворения не произошло, период расцвета желтого тела ограничивается 12-14 днями. В этом случае оно называется менструальным желтым телом. Более длительно желтое тело сохраняется, если наступила беременность — это желтое тело беременности.

Разница между желтым телом беременности и менструальным ограничивается только длительностью периода расцвета и размерами (1,5…2 см в диаметре у менструального и более 5 см в диаметре у желтого тела беременности). После прекращения функционирования как желтое тело беременности, так и менструальное претерпевают инволюцию (стадию обратного развития). Железистые клетки атрофируются, а соединительная ткань центрального рубца разрастается. В результате на месте бывшего желтого тела формируется белое тело — соединительнотканный рубец. Оно сохраняется в яичнике на протяжении несколько лет, но затем рассасывается.

 

53.Эмбриогенез человека. Основные периоды и их характеристика: сроки, биологическое

содержание и результаты. Понятие о классических периодах развития.

Процесс внутриутробного развития зародыша человека продолжается в среднем 280 сут. Эмбриональное развитие принято делить на 3 периода: начальный (1 нед), зародышевый (2-8 нед) и плодный (9 нед- рождение). К концу зародышевого периода заканчивается закладка основных эмбриональных зачатков тканей и органов и зародыш приобретает основные черты, характерные для человека. К 9-й неделе развития начало 3-го месяца длина зародыша составляет 40 мм, а масса около 5 г.

Стадии эмбриогенеза:

- оплодотворение

- дробление

- гаструляция

- гистогенез

- органогенез

- системогенез.

Оплодотворение

Оплодотворение происходит в ампулярной части яйцевода. Оптимальные условия для взаимодействия сперматозоидов с яйцеклеткой обычно создаются в пределах 12 ч после овуляции. При осеменении многочисленные спермии приближаются к яйцеклетке и вступают в контакт с ее оболочкой. Яйцеклетка начинает совершать вращательные движения вокруг своей оси со скоростью 4 вращения в минуту. Эти движения обусловлены влиянием биения жгутиков сперматозоидов и продолжаются около 12 ч. В процессе взаимодействия мужской и женской половых клеток в них происходит ряд изменений. Для спермиев характерны явления капацитации и акросомальная реакция. Капацитация представляет собой процесс активации спермиев, который происходит в яйцеводе под влиянием слизистого секрета его железистых клеток. В механизмах капацитации большое значение принадлежит гормональным факторам, прежде всего прогестерону (гормон желтого тела), активизирующему секрецию железистых клеток яйцеводов. После капацитации следует акросомальная реакция, при которой происходит выделение из сперматозоидов ферментов — гиалуронидазы и трипсина, играющих важную роль в процессе оплодотворения. Гиалуронидаза расщепляет гиалуроновую кислоту, содержащуюся в блестящей зоне. Трипсин расщепляет белки цитолеммы яйцеклетки и клеток лучистого венца. В результате происходят диссоциация и удаление клеток лучистого венца, окружающих яйцеклетку, и растворение блестящей зоны. В яйцеклетке цитолемма в области прикрепления спермия образует приподнимающий бугорок, куда входит один сперматозоид, при этом за счет кортикальной реакции (см. выше) образуется плотная оболочка — оболочка оплодотворения, препятствующая вхождению других спермиев и явлению полиспермии. Ядра женской и мужской половых клеток превращаются в пронуклеусы, сближаются, наступает стадия синкариона. Возникает зигота и к концу 1-х суток после оплодотворения начинается дробление. Пол будущего ребенка определяется комбинацией половых хромосом в зиготе. Если яйцеклетка оплодотворена сперматозоидом с половой хромосомой X, то в образующемся диплоидном наборе хромосом (у человека их 46) содержатся две Х-хромосомы, характерные для женского организма. При оплодотворении сперматозоидом с половой хромосомой Y в зиготе образуется комбинация половых хромосом XY, характерная для мужского организма. Таким образом, пол ребенка зависит от половых хромосом отца. Так как число образующихся сперматозоидов с Х- и Y-хромосомами одинаково, число новорожденных девочек и мальчиков должно быть равным. Однако в связи с большей чувствительностью эмбрионов мужского пола к повреждающему действию различных факторов число новорожденных мальчиков немного меньше, чем девочек: на 100 мальчиков рождаются 103 девочки.

Дробление

Дробление зародыша человека начинается к концу 1-х суток и продолжается в течение 3—4 сут после оплодотворения, по мере продвижения зародыша по яйцеводу к матке. Движение зародыша обеспечивается перистальтическими сокращениями мускулатуры яйцевода, мерцанием ресничек его эпителия, а также перемещением секрета желез маточной трубы. Питание зародыша осуществляется за счет небольших запасов желтка в яйцеклетке и, возможно, содержимого маточной трубы.

Дробление зиготы человека полное неравномерное асинхронное. В течение первых суток оно происходит медленно. Первое деление завершается через 30 ч; при этом борозда дробления проходит по меридиану и образуется два бластомера. За стадией двух бластомеров следует стадия трех бластомеров. Через 40 ч образуются 4 клетки. С первых же делений формируются два вида бластомеров: “темные” и “светлые”. “Светлые” бластомеры дробятся быстрее и располагаются одним слоем вокруг “темных”, которые оказываются в середине зародыша. Из поверхностных “светлых” бластомеров в дальнейшем возникает трофобласт, связывающий зародыш с материнским организмом и обеспечивающий его питание. Внутренние “темные” бластомеры формируют эмбриобласт — из него образуются тело зародыша и все остальные внезародышевые органы, кроме трофобласта. Начиная с трех суток дробление идет быстрее и на 4-е сутки зародыш состоит из 7—12 бластомеров. Уже через 50—60 ч образуется морула, а на 3—4-е сутки начинается формирование бластоцисты — полого пузырька, заполненного жидкостью. Бластоциста в течение 3 сут находится в яйцеводе, через 4—4'/2 сут она состоит из 58 клеток, имеет хорошо развитый трофобласт и расположенную внутри клеточную массу эмбриобласта. Через 5—5'/2 сут бластоциста попадает в матку. К этому времени она увеличивается в размерах благодаря росту числа бластомеров до 107 клеток и объема жидкости вследствие усиленного всасывания трофобластом секрета маточных желез, а также активной выработке жидкости самим трофобластом. Эмбриобласт располагается в виде узелка зародышевых клеток, который прикреплен изнутри к трофобласту на одном из полюсов бластоцисты. В течение около 2 сут (с 5-х по 7-е сутки) зародыш проходит стадию свободной бластоцисты. В этот период в трофобласте и эмбриобласте происходят изменения, связанные с подготовкой к внедрению зародыша в стенку матки — имплантации. Бластоциста покрыта оболочкой оплодотворения. В трофобласте увеличивается количество лизосом, в которых накапливаются ферменты, обеспечивающие разрушение (лизис) тканей матки и тем самым способствующие внедрению зародыша в толщу слизистой оболочки матки. Появляющиеся в трофобласте выросты разрушают оболочку оплодотворения. Зародышевый узелок упло-щается и превращается в зародышевый щиток, в котором начинается подготовка к первой фазе гаструляции. Гаструляция осуществляется путем деламинации с образованием двух листков: наружного — эпибласта и внутреннего — гипобласта (рис. 34). Имплантация (нидация) — внедрение зародыша в стенку матки — начинается с 7-х суток после оплодотворения и продолжается около 40 ч. При имплантации зародыш полностью погружается в ткани слизистой оболочки матки. Различаются две стадии имплантации: адгезия (прилипание) и инвазия (проникновение). В первой стадии трофобласт прикрепляется к слизистой оболочке матки и в нем начинают дифференцироваться два слоя — цитотрофобласт и симпластотрофобласт, или плазмодиотрофобласт. Во время второй стадии симпластотрофобласт, продуцируя протеолитические ферменты, разрушает слизистую оболочку матки. При этом формирующиеся ворсинки трофобласта, внедряясь в матку, последовательно разрушают ее эпителий, затем подлежащую соединительную ткань и стенки сосудов, и трофобласт вступает в непосредственный контакт с кровью материнских сосудов. Образуется имплантационная ямка, в которой вокруг зародыша появляются участки кровоизлияний. Трофобласт вначале (первые 2 нед) потребляет продукты распада материнских тканей (гистиотрофный тип питания), затем питание зародыша осуществляется непосредственно из материнской крови (гематотрофный тип питания). Из крови матери зародыш получает не только все питательные вещества, но и кислород, необходимый для дыхания. Одновременно в слизистой оболочке матки усиливается образование из клеток соединительной ткани богатых гликогеном децидуальных клеток. После того как зародыш полностью погружается в имплантационную ямку, отверстие, образовавшееся в слизистой оболочке матки, заполняется кровью и продуктами разрушения ткани слизистой оболочки матки. В последующем дефект слизистой оболочки покрывается регенерирующим эпителием.

Период имплантации является первым критическим периодом развития зародыша. Гематотрофный тип питания, сменяющий гистиотрофный, сопровождается переходом к качественно новому этапу эмбриогенеза — ко второй фазе гаструляции и закладке внезародышевых органов.

Гаструляция

Гаструляция у человека осуществляется в две фазы. Первая фаза предшествует имплантации или идет в процессе ее, т. е. совершается на 7-е сутки, а вторая фаза начинается только на 14—15-е сутки. В период между этими фазами активно формируются внезародышевые органы, обеспечивающие необходимые условия для развития зародыша.

Первая фаза гаструляции происходит путем деламинации, при этом клетки эмбриобласта расщепляются на два листка — наружный — эпибласт (включает материал эктодермы, нервной пластинки, мезодермы и хорды), обращенный к трофобласту, и внутренний — гипобласт (включает материал зародышевой и внезародышевой энтодермы), обращенный в полость бластоцисты. На 7-е сутки развития обнаруживаются выселившиеся из зародышевого щитка клетки, которые располагаются в полости бластоцисты и формируют внезародышевую мезодерму (мезенхиму). К 11-м суткам она заполняет полость бластоцисты. Мезенхима подрастает к трофобласту и внедряется в него, при этом формируется хорион — ворсинчатая оболочка зародыша с первичными хориальными ворсинками.

Внезародышевая мезодерма участвует в формировании закладок амниотического (вместе с эктодермой) и желточного (вместе с энтодермой) пузырьков. Края эпибласта растут по мезодермальной закладке и формируют амниотический пузырек, дно которого обращено к энтодерме. Размножающиеся клетки энтодермы образуют к 13—14-м суткам желточный пузырек. У человека желточный мешок практически не содержит желтка, но заполнен серозной жидкостью.

К 13—14 суткам зародыш имеет следующее строение. Трофобласт вместе с подстилающей его внезародышевой мезодермой образует хорион. В части зародыша, которая обращена в глубь стенки матки, располагаются прилегающие друг к другу амниотический пузырек и желточный пузырек. Эта часть прикреплена к хориону при помощи амниотической, или зародышевой, ножки, образованной внезародышевой мезодермой. Прилегающие друг к другу дно амниотического и крыша желточного пузырьков образуют зародышевый щиток. Утолщенное дно амниотического пузырька представляет собой эпибласт, а остальная часть его стенки — внезародышевую эктодерму. Крышу желточного пузырька образует гипобласт, а стенку его вне щитка — внезародышевая энтодерма.

Таким образом, у человека в ранние периоды эмбриогенеза хорошо развиты внезародышевые части — хорион, амнион и желточный мешок.

Вторая фаза гаструляции начинается на 14—15-е сутки и продолжается до 17-х суток развития. Она становится возможной лишь после описанных процессов формирования вне-зародышевых органов и установления гематотрофного типа питания. В эпибласте клетки интенсивно делятся и смещаются по направлению к центру и вглубь, располагаясь между наружным и внутренним зародышевыми листками. В результате процесса иммиграции клеточного материала образуется первичная полоска, соответствующая по своим потенциям боковым губам бластопора, и первичный узелок – аналог дорсальной губы. Ямка, находящаяся на вершине узелка, постепенно углубляется и прорываясь через эктодерму, превращается в гомолог нейрокишечного канала ланцетника. Клеточный материал эпибласта, расположенный кпереди от первичного узелка, через дорсальную губу смещается в пространство между дном амниотического пузырька и крышей желточного, давая хордальный отросток. Одновременно с этим клеточный материал первичной полоски ложится в виде мезодермальных крыльев в околохордальное положение. Зародыш приобретает трехслойное строение и почти не отличается от зародыша птиц на сходной стадии эмбриогенеза.

К этому же времени относится и появление зачатка аллантоиса. Начиная с 15-х суток в амниотическую ножку из заднего отдела кишечной трубки врастает небольшой пальцевидный вырост — аллантоис. Таким образом, к концу второй фазы гаструляции завершается закладка всех зародышевых листков и всех внезародышевых органов.

На 17-е сутки продолжается закладка зачатков осевых органов. В этой стадии видны все три зародышевых листка. В составе эктодермы клеточные элементы располагаются в несколько слоев. Из зоны головного узелка наблюдается массовое выселение клеток, которые, располагаясь между экто- и энтодермой, и образуют зачаток хорды. Стенки амниотического пузырька и желточного мешка на большем протяжении двухслойны. В стенке желточного мешка происходит образование кровяных островков и первичных кровеносных сосудов.

Связь тела эмбриона с хорионом осуществляется за счет сосудов, прорастающих в стенку аллантоиса и ворсинки хориона. Наружный зародышевый листок в головном конце образован одним слоем клеток, наиболее высоких по медиальной оси зародыша. При переходе в эктодерму амниотического пузырька клетки его уплощаются. В переднем краниальном отделе можно видеть первичную полоску и первичный узелок. Полость плодного пузыря выстлана хорошо развитым наружным листком мезодермы (соматоплевры), которая образует также основу хориальных ворсин. Стенки желточного мешка и амниотического пузырька выстланы однослойным эпителием (соответственно энтодермального и эктодермального происхождения) и висцеральной экзоцеломической м







Дата добавления: 2015-12-04; просмотров: 205. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия