Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема умножения вероятностей





 

Найдем вероятность, что при двух бросаниях кубика выпадет последовательно i и k. Рассмотрим N двойных бросаний. Пусть первый из каждой пары бросков дал i в Ni случаях (так что Рi» Ni / N). Теперь выделим из этих Ni случаев те Nk событий, когда второй бросок кубика давал k (так что Рk» Nk / Ni). Тогда искомая вероятность

Р (i, затем k) =

Значит, вероятность того, что при бросаниях кубика выпадут, допустим, сначала 2, а затем 5, равна 1/6 × 1/6 = 1/36

В общем случае теорема умножения вероятностей утверждает:

вероятность совмещения двух или нескольких независимых событий равна произведению вероятностей каждого из них в отдельности.

 

Средние значения случайных величин

 

Случайная величина, которая может принимать ряд дискретных значений, для каждого из которых имеется своя вероятность, называется дискретной случайной величиной. Например, число молекул газа, залетевших в некоторый объем в данный момент времени – дискретная случайная величина. Она может принимать значения в виде последовательности целых чисел. Зная вероятности появления различных результатов измерений дискретной случайной величины х, можно найти их среднее значение á х ñ. По определению среднего

á х ñ=

 

Функция распределения

 

Рассмотрим случай, когда случайная величина х имеет непрерывный характер (например, скорости молекул). Для этого разобьем всю область изменения х на отдельные интервалы и будем считать число попаданий случайной величины в тот или иной интервал. Интервалы должны быть во избежание заметных флуктуаций достаточно большими, чтобы в каждом интервале число попаданий было Ni >> 1 и можно было бы по частоте попадания достаточно точно определить вероятность попадания случайной величины в данный интервал. Вместе с тем, интервалы должны быть достаточно небольшими, чтобы более детально характеризовать распределение величины х.

Итак, мы имеем достаточно большое число достаточно небольших интервалов и, допустим, нам известна вероятность Рх попадания в тот или иной интервал D х. Сама величина х весьма мала. Поэтому в качестве характеристики случайной величины берут отношение D Рх / D х, которое для достаточно малых D х не зависит от величины самого интервала D х.

Это отношение при D х ® 0 называют функцией распределения f (x). Этой функции можно приписать смысл плотности вероятности, т.е. вероятности интересующей нас величины оказаться в единичном интервале вблизи значения х.

В разных случаях функция распределения имеет совершенно различный вид, один из которых в качестве примера приведен на рисунке.

Площадь полоски шириной dx на этом рисунке равна вероятности того, что случайная величина х окажется в пределах интервала (х, х + dx):

dPx = f (x) dx

Вероятность того, что величина х попадает в интервал (а, b) (согласно теореме о сложении вероятностей):

Вероятность того, что величина х может принять какое-либо значение (достоверное событие), равна единице. Это называют условием нормировки:

,

где интегрирование производится по всему интервалу возможных значений величины х. Из этого условия следует, что вся площадь под кривой f (x) равна единице.

 

Средние значения

 

Среднее значение величины х можно найти, зная ее нормированную на единицу функцию распределения f (x). Обратимся к формуле для среднего значения дискретной величины:

á х ñ =

Формула справедлива и для случая, когда интервал изменения величины х будет разбит на небольшие участки. Уменьшая участки, мы должны в конце концов заменить Рi на dP и сумму на интеграл:

á х ñ = ,

где интегрирование проводится по интересующему нас интервалу значений х. Аналогичные формулы справедливы для любой функции j (х), например

á х 2ñ = .

 

Флуктуации

 

Вероятность случайного события и экспериментально наблюдаемая доля результатов, когда событие осуществляется, - это не одно и то же. Последняя (доля результатов) испытывает случайные отклонения от предсказываемой вероятности. Именно такого рода отклонения происходят в любых макросистемах. Эти отклонения и обуславливают флуктуации.

Согласно теории вероятности, с увеличением числа N испытаний относительная флуктуация любой величины уменьшается по закону . Именно грандиозность числа N молекул и объясняет, почему макроскопические законы, получаемые на основе статистических представлений о движении частиц макросистемы, оказываются точными.

В дальнейшем будет использовано понятие бесконечно малого объема dV макросистемы. Под этим будет пониматься такой объем, размеры которого ничтожны по сравнению с размерами самой макросистемы, но все же намного превосходящие характерный размер ее микростроения. Каждая бесконечно малая область, предполагается, содержит число частиц dN настолько большое, что относительной флуктуацией их можно пренебречь.

 







Дата добавления: 2015-12-04; просмотров: 218. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия