Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема умножения вероятностей





 

Найдем вероятность, что при двух бросаниях кубика выпадет последовательно i и k. Рассмотрим N двойных бросаний. Пусть первый из каждой пары бросков дал i в Ni случаях (так что Рi» Ni / N). Теперь выделим из этих Ni случаев те Nk событий, когда второй бросок кубика давал k (так что Рk» Nk / Ni). Тогда искомая вероятность

Р (i, затем k) =

Значит, вероятность того, что при бросаниях кубика выпадут, допустим, сначала 2, а затем 5, равна 1/6 × 1/6 = 1/36

В общем случае теорема умножения вероятностей утверждает:

вероятность совмещения двух или нескольких независимых событий равна произведению вероятностей каждого из них в отдельности.

 

Средние значения случайных величин

 

Случайная величина, которая может принимать ряд дискретных значений, для каждого из которых имеется своя вероятность, называется дискретной случайной величиной. Например, число молекул газа, залетевших в некоторый объем в данный момент времени – дискретная случайная величина. Она может принимать значения в виде последовательности целых чисел. Зная вероятности появления различных результатов измерений дискретной случайной величины х, можно найти их среднее значение á х ñ. По определению среднего

á х ñ=

 

Функция распределения

 

Рассмотрим случай, когда случайная величина х имеет непрерывный характер (например, скорости молекул). Для этого разобьем всю область изменения х на отдельные интервалы и будем считать число попаданий случайной величины в тот или иной интервал. Интервалы должны быть во избежание заметных флуктуаций достаточно большими, чтобы в каждом интервале число попаданий было Ni >> 1 и можно было бы по частоте попадания достаточно точно определить вероятность попадания случайной величины в данный интервал. Вместе с тем, интервалы должны быть достаточно небольшими, чтобы более детально характеризовать распределение величины х.

Итак, мы имеем достаточно большое число достаточно небольших интервалов и, допустим, нам известна вероятность Рх попадания в тот или иной интервал D х. Сама величина х весьма мала. Поэтому в качестве характеристики случайной величины берут отношение D Рх / D х, которое для достаточно малых D х не зависит от величины самого интервала D х.

Это отношение при D х ® 0 называют функцией распределения f (x). Этой функции можно приписать смысл плотности вероятности, т.е. вероятности интересующей нас величины оказаться в единичном интервале вблизи значения х.

В разных случаях функция распределения имеет совершенно различный вид, один из которых в качестве примера приведен на рисунке.

Площадь полоски шириной dx на этом рисунке равна вероятности того, что случайная величина х окажется в пределах интервала (х, х + dx):

dPx = f (x) dx

Вероятность того, что величина х попадает в интервал (а, b) (согласно теореме о сложении вероятностей):

Вероятность того, что величина х может принять какое-либо значение (достоверное событие), равна единице. Это называют условием нормировки:

,

где интегрирование производится по всему интервалу возможных значений величины х. Из этого условия следует, что вся площадь под кривой f (x) равна единице.

 

Средние значения

 

Среднее значение величины х можно найти, зная ее нормированную на единицу функцию распределения f (x). Обратимся к формуле для среднего значения дискретной величины:

á х ñ =

Формула справедлива и для случая, когда интервал изменения величины х будет разбит на небольшие участки. Уменьшая участки, мы должны в конце концов заменить Рi на dP и сумму на интеграл:

á х ñ = ,

где интегрирование проводится по интересующему нас интервалу значений х. Аналогичные формулы справедливы для любой функции j (х), например

á х 2ñ = .

 

Флуктуации

 

Вероятность случайного события и экспериментально наблюдаемая доля результатов, когда событие осуществляется, - это не одно и то же. Последняя (доля результатов) испытывает случайные отклонения от предсказываемой вероятности. Именно такого рода отклонения происходят в любых макросистемах. Эти отклонения и обуславливают флуктуации.

Согласно теории вероятности, с увеличением числа N испытаний относительная флуктуация любой величины уменьшается по закону . Именно грандиозность числа N молекул и объясняет, почему макроскопические законы, получаемые на основе статистических представлений о движении частиц макросистемы, оказываются точными.

В дальнейшем будет использовано понятие бесконечно малого объема dV макросистемы. Под этим будет пониматься такой объем, размеры которого ничтожны по сравнению с размерами самой макросистемы, но все же намного превосходящие характерный размер ее микростроения. Каждая бесконечно малая область, предполагается, содержит число частиц dN настолько большое, что относительной флуктуацией их можно пренебречь.

 







Дата добавления: 2015-12-04; просмотров: 218. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия