Спектральные измерительные приборы
Общие сведения Спектральные измерительные приборы - спектрофотометры - являются приборами для измерения фотометрических величин оптического излучения с разложением в спектр, т. е. с разложением по длинам волн. Существует огромное количество спектральных измерительных приборов, в которых для регистрации используются не только различные устройства для получения спектров, но и различные принципы. Прежде всего нужно выделить два больших класса спектральных приборов, разделяемых по принципу регистрации спектров - это приборы дисперсионные и интерференционные. На схеме рис. 8.6 представлены наиболее часто используемые типы спектральных приборов.
Прежде чем рассматривать конкретные типы или классы спектральных измерительных приборов, имеет смысл кратко остановиться на основных факторах, определяющих метрологические характеристики спектрофотометров. Наиболее важные из них следующие:
(8.13) либо по измерению расстояния на выходе прибора между монохроматическими линиями, находящимися на расстоянии dλ: (8.14) Чаще всего спектральные приборы характеризуют обратной линейной дисперсией: (8.15)
(8.16) Это безразмерная величина, равная отношению длины волны излучения, поделенной на интервал длин волн, равный наименьшему разрешаемому интервалу. Последнее понятие определяется по т.н. критерию Рэлея, суть которого состоит в том, что разрешенными спектральными линиями считаются такие две линии, у которых дифракционный максимум одной совпадаете дифракционным минимумом другой. Рис. 8.7 поясняет ситуацию.
Если линии имеют одинаковую интенсивность, то критерий Рэлея означает, что минимально разрешенными считаются две монохроматические линии, для которых провал между максимумами составляет не менее 0,8 от интенсивности каждого из максимумов.
Дифракционные спектральные приборы В дисперсионных спектральных приборах в качестве элемента, разлагающего электромагнитное излучение в спектр по длинам волн, используются либо призмы, либо дифракционные решетки. В призмах для спектрального разложения реализуется зависимость показателя преломления вещества призмы от длины волны. В результате параллельный пучок света, пройдя призму, для разных длин волн отклонится на разные углы. Если вышедшее излучение собрать в фокусе линзы, то свет различных длин соберется в разных местах. Теория дисперсии излучения на призме дает следующее выражение для угловой дисперсии: (8.17) где A/2 - половина угла при вершине призмы (рис. 8.8 ); n - показатель преломления вещества призмы; dλ - дисперсия показателя преломления материала, из которого изготовлена призма.
Разрешающая способность прибора с призмой зависит от линейного размера основания призмы Т (см. рис. 8.8 ): (8.18) Существуют самые разнообразные варианты призм. Призмы изготовляют не только из стекла и других твердых прозрачных материалов, ной из жидкостей и даже из газов. Для реализации последнего изготавливают из плоскопараллельных пластинок стеклянные кюветы, имеющие в сечении форму треугольника. Напуская внутрь такой кюветы различные газы, можно изменять характеристики диспергирующего элемента. Дифракционная решетка как диспергирующий элемент представляет собой либо структуру с периодическим чередованием прозрачных и непрозрачных участков, либо отражающую зеркальную поверхность, на которую нанесены также с периодическим чередованием штрихи. Принцип действия решетки легко понять, рассмотрев интерференцию плоских волн, испытавших дифракцию на щелях решетки. Интерференция двух лучей, исходящих от соседних щелей, даст максимумы интенсивности для геометрической разности хода Δ на рис. 8.9 равной целому числу волн излучения, т. е.:
(8.19) где t - расстояние между соседними штрихами решетки; φ - угол падения пучка света, отсчитанный от нормали; Ψ - угол дифракции; k - порядок спектра. Последнее означает, что максимумы интенсивности спектра, образованного дифракционной решеткой, будут наблюдаться для Δ1=K1λ, Δ2=K1λ... Δn=Knλ. Нулевой порядок при К=0 будет для всех длин волн наблюдаться одним углом (на рис. 8.9 φ=Ψ). Для наблюдения спектра в приборе с дифракционной решеткой необходимо собрать параллельный пучок дифракционных лучей в фокусе линзы. Теория дифракционной решетки позволяет определить основные параметры прибора с таким диспергирующим элементом. Разрешающая способность дифракционной решетки в первом порядке равна полному числу штрихов на заштрихованной поверхности, т. е. (8.20) Обычно дифракционные решетки изготавливают с постоянной решетки 1/t, равной 300, 600, 1200, 2400, 3600 штрихов на миллиметр. Для инфракрасной области изготавливают решетки с меньшим числом штрихов и с профилированной формой штриха, позволяющей концентрировать излучение в определенном диапазоне длин волн. Дисперсия дифракционной решетки равна (8.21) т. е. при заданных углах падения и дифракции угловая дисперсия решетки не зависит от ее постоянной t. В спектральных приборах с дифракционными решетками используются самые разнообразные типы периодических структур. Первые дифракционные решетки изготавливались в виде проволочек, намотанных на два параллельных винта. Современные решетки могут быть изготовлены очень больших размеров (до 500 мм). Существуют делительные машины, позволяющие наносить до 106 штрихов с профилированием формы штриха. Штрихи можно наносить не только на плоское зеркало, но и на вогнутую или тороидальную поверхность. Вогнутые дифракционные решетки позволяют получать сфокусированное изображение спектра без использования фокусирующей оптики. Вогнутая решетка фокусирует изображение щели на плоскости цилиндра радиусом, равным радиусу кривизны решетки, так называемом «круге Роуланда» (см. рис. 8.10 ).
Если нарезать дифракционную решетку на поверхности тора, то, подобрав соответствующим образом радиусы кривизны тора, можно значительно уменьшить искажения изображения (аберрации) входной щели в плоскости изображения. В современных спектральных приборах с дифракционными решетками уменьшение аберраций достигают также за счет изменения шага нарезки. Это позволяет изготавливать малогабаритные светосильные приборы с очень высоким качеством спектра. Спектральные приборы в основном строятся по схеме, изображенной на рис. 8.11
Излучение от источника электромагнитного излучения фокусируется на входную щель Щ1, которая расположена в фокусе объектива Л1 создающего параллельный пучок света. Диспергирующий элемент-призма или дифракционная решетка - отклоняют излучение различных длин волн под разными углами. Выходная щель Щ2 выделяет из спектра нужный участок длин волн. В реальных спектральных приборах линзы могут заменяться зеркалами, а в приборах с вогнутыми дифракционными решетками фокусирующие элементы Л1, и Л2 вообще отсутствуют. Для того чтобы спектральный прибор мог использоваться как измерительное устройство, регистрирующее спектральную освещенность или спектральную яркость, за выходной щелью необходимо установить регистрирующий узел. В зависимости от того, какого типа регистрирующееся устройство используются в конкретном случае спектральные приборы и подразделяются на следующие типы:
Это позволяет организовывать одновременную регистрацию всего спектра с записью сигналов в запоминающееся устройство, например в компьютер;
В качестве регистрирующих элементов в монохроматорах, полихроматорах и в квантометрах применяются устройства с внутренним фотоэффектом - фотодиоды, фотоэлементы, - а также устройства с внешним фотоэффектом - вакуумные фотоэлементы, фотоумножители. Основными преимуществами дисперсионных спектральных приборов является высокая разрешающая способность по длинам волн, которая в реальных схемах может сочетаться с низким уровнем рассеянного света. К недостаткам в первую очередь следует отнести невысокую в сравнении с фильтровыми или интерференционными приборами светосилу как следствие того, что входная щель вырезает из изображения источника света иногда только малую часть. Для повышения светосилы дисперсионных спектральных приборов в ряде случаев вместо одной входной щели устанавливается растр со многими элементами, состоящими из прозрачных и непрозрачных полос и точек, расстояния между которыми соответствуют расположению растровых элементов и на выходе прибора. Такие приборы называют растровыми. Использование растров вместо щелей в спектральных приборах позволяет увеличить светосилу спектрального прибора в несколько раз.
|