Студопедия — Средообразующая роль живого вещества в биосфере.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Средообразующая роль живого вещества в биосфере.






Средообразующая функция состоит в трансформации физико-химических параметров среды (литосферы, гидросферы, атмосферы) в условия, благоприятные для существования организмов. Можно сказать, что она является совместным результатом всех рассмотренных выше функций живого вещества: энергетическая функция обеспечивает энергией все звенья биологического круговорота; деструктивная и концентрационная способствуют извлечению из природной среды и накоплению рассеянных, но жизненно важных для организмов элементов.

Средообразующие функции живого вещества создали и поддерживают в равновесии баланс вещества и энергии в биосфере, обеспечивая стабильность условий существования организмов, в том числе человека. Вместе с тем живое вещество способно восстанавливать условия обитания, нарушенные в результате природных катастроф или антропогенного воздействия. Эту способность живого вещества к регенерации экологических условий выражает принцип Ле Шателье, заимствованный из области термодинамических равновесий. Он заключается в том, что изменение любых переменных в системе в ответ на внешние возмущения происходит в направлении компенсации производимых возмущений. В теории управления аналогичное явление носит название отрицательных обратных связей. Благодаря этим связям система возвращается в первоначальное состояние, если производимые возмущения не превышают пороговых значений. Таким образом, гомеостаз, устойчивость экосистемы, оказывается явлением не статическим, а динамическим.

В результате средообразующей функции в географической оболочке произошли следующие важнейшие события: был преобразован газовый состав первичной атмосферы; изменился химический состав вод первичного океана; образовалась толща осадочных пород в литосфере; на поверхности суши возник плодородный почвенный покров (также плодородны воды океана, рек и озер).

Вернадский объясняет парадокс: почему, несмотря на то, что общая масса живого вещества – пленка жизни, покрывающая Землю, – ничтожно мала, результаты жизнедеятельности организмов сказываются на составе и литосферы, и гидросферы, и атмосферы? Если живое вещество распределить на поверхности Земли ровным слоем, его толщина составит всего 2 см. При такой незначительной массе организмы осуществляют свою планетарную роль за счет весьма быстрого размножения, т. е. весьма энергичного круговорота веществ, связанного с этим размножением.

Масса живого вещества, соответствующая данному моменту времени, с трудом сопоставляется с тем грандиозным ее количеством, которое производило свою работу в течение сотен миллионов лет существования организмов. Если рассчитать всю массу живого вещества, воспроизведенного за это время биосферой, она окажется равной 2,4х1020 т. Это в 12 раз превышает массу земной коры.

На земной поверхности нет химической силы, более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом. Глины, известняки, доломиты, бурые железняки, бокситы – это все породы органогенного происхождения. Наконец, свойства природных вод, соленость Мирового океана и газовый состав атмосферы определяются жизнедеятельностью населяющих планету существ.

Рассмотрим влияние средообразующей функции организмов на содержание кислорода и углекислого газа в атмосфере. Напомним, что повышение концентрации СО2 в атмосфере вызывает «парниковый эффект» и способствует потеплению климата. Свободный кислород выделяется при фотосинтезе. Впервые на Земле массовое развитие фотосинтезирующих организмов – сине-зеленых водорослей – имело место 2,5 млрд лет назад. Благодаря этому в атмосфере появился кислород, что дало импульс быстрому развитию животных. Однако интенсивный фотосинтез сопровождался усиленным потреблением СО2 и уменьшением его содержания в атмосфере. Это привело к ослаблению «парникового эффекта», резкому похолоданию и первому в истории планеты (гуронскому) оледенению.

В наши дни накопление в атмосфере углекислого газа от сжигания углеводородного топлива рассматривается как тревожная тенденция, ведущая к потеплению климата, таянию ледников и грозящая повышением уровня Мирового океана более чем на 100 м. В этой связи следует отметить функцию захвата и захоронения избыточной углекислоты морскими организмами путем перевода ее в соединения углекислого кальция, а также путем образования биомассы живого вещества на суше и в океане.

Чистота морских вод – во многом результат фильтрации, осуществляемой разнообразными организмами, но особенно зоопланктоном. Большинство из этих организмов добывает пищу, отцеживая из воды мелкие частицы. Работа их настолько интенсивна, что весь океан очищается от взвеси за 4 года. Байкал исключительной чистотой своих вод во многом обязан веслоногому рачку эпишуре, который за год трижды процеживает его воду.

Основу функционирования живого вещества составляет биотический круговорот веществ. Биотический круговорот обеспечивается взаимодействием трех основных групп организмов:

1) продуцентов – зеленых растений, осуществляющих фотосинтез, и бактерий, способных к хемосинтезу, – они создают первичное органическое вещество;

2) консументов, потребляющих органическое вещество, – это растительноядные и хищные животные;

3) редуцентов (деструкторов), разлагающих мертвое органическое вещество до минерального, – это в основном бактерии, грибы и простейшие животные.

На восходящей ветви биотического круговорота, основанного на выполнении энергетической функции зелеными растениями, происходит аккумуляция солнечной энергии в виде органических веществ, синтезируемых растениями из неорганических соединений – углекислого газа, воды, азота, зольных элементов питания. Нисходящая ветвь биотического круговорота связана с потерями органического вещества. Важнейший процесс - дыхание растений, при котором до половины ассимилированного при фотосинтезе органического вещества окисляется до СО2 и возвращается в атмосферу. Второй существенный процесс расходования органического вещества и накопленной в нем энергии – это потребление растений консументами первого порядка – растительноядными животными. Запасаемая фитофагами с пищей энергия также в значительной мере расходуется на дыхание, жизнедеятельность, размножение, выделяется с экскрементами.

Растительноядные животные являются пищей для плотоядных животных – консументов более высокого трофического уровня. Консументы второго порядка расходуют накопленную с пищей энергию по тем же каналам, что и консументы первого порядка (растительноядные животные). Число трофических уровней, образуемых хищными животными, обычно не превышает трех-четырех, так как в связи с большими тратами энергии численность и биомасса животных на более высоких трофических уровнях становятся все меньше.

Каждое звено экосистемы поставляет в окружающую среду органические остатки (детрит), которые служат источником пищи и энергии для животных-сапрофагов, а главным образом для микроорганизмов – бактерий, грибов, актиномицетов и др. Завершающим этапом превращения органического вещества являются процессы гумификации и далее окисления гумуса до СО2 и минерализации зольных элементов, которые вновь возвращаются в почву и атмосферу, обеспечивая растение пищей.

Таким образом, биотический круговорот представляет собой непрерывный процесс создания и деструкции органического вещества. Он реализуется при участии представителей всех трех групп организмов: без продуцентов невозможна жизнь, поскольку лишь они производят основу жизни – первичное органическое вещество; консументы разных порядков, потребляя первичную и вторичную продукцию и переводя органическое вещество из одной формы в другую, способствуют возрастанию многообразия форм жизни на Земле; наконец, редуценты, разлагая органическое вещество до минерального, возвращают его к началу круговорота. Глобальные циклы миграции химических элементов не только связывают три наружные оболочки нашей планеты в единое целое, но и обусловливают непрерывную эволюцию ее состава.

 







Дата добавления: 2015-12-04; просмотров: 597. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия