Сообщение, уменьшающее неопределенность знаний в два раза, несет 1 бит информации
Что такое «неопределенность знаний»? Лучше всего это пояснить на примерах.
Неопределенность знаний о некотором событии – это количество возможных результатов события Вернемся к примеру с монетой. После того, как вы бросили монету и посмотрели на нее, вы получили зрительное сообщение, что выпал, например, орел. Произошло одно из двух возможных событий. Неопределенность знаний уменьшилась в два раза: было два варианта, остался один. Значит, узнав результат бросания монеты, вы получили 1 бит информации. Сообщение о том, что произошло одно событие из двух равновероятных, несет один бит информации. Рассмотрим, как можно подсчитать количество информации в сообщении, используя содержательный подход. Данный подход применяется в тех случаях, когда речь идет о том, что произошло одно из конечного множества (N) возможных событий. Пусть в некотором сообщении содержатся сведения о том, что произошло одно из N равновероятных (равновозможных) событий. Тогда количество информации i, заключенное в этом сообщении, и число событий N связаны формулой: 2i = N. Если N равно целой степени двойки (2, 4, 8, 16 и т.д.), то вычисления легко произвести "в уме". В противном случае количество информации становится нецелой величиной, и для решения задачи придется воспользоваться таблицей логарифмов либо определять значение логарифма приблизительно (ближайшее целое число, большее). Например, если из 256 одинаковых, но разноцветных шаров наугад выбрали один, то сообщение о том, что выбрали красный шар, несет 8 бит информации (28=256). Количество информации i, содержащейся в сообщении о том, что произошло одно из N равновероятных событий, определяется из решения показательного уравнения: 2i=N
|