Однофакторный дисперсионный анализ
Поставленную задачу можно сформулировать следующим образом: определить влияние многоуровневого фактора на случайную величину. Рассмотрим более простой случай - влияние рациона питания на привес животных. Было проведено исследование на 4 группах животных: первая группа потребляла обычный рацион, вторая – питалась только макаронами, третья – мясом, четвертая – овощами. Изучаемым фактором является рацион питания, который имеет четыре уровня, случайная величина – это привес животных. Нужно определить есть ли разница хотя бы между двумя средними в этих группах. Прежде чем приступить к решению данной задачи, вспомним, что дисперсия является характеристикой разброса случайной величины относительно среднего. В идеале, внутри каждой группы вес животных должен бы быть одинаковым, так как они питаются одинаковым рационом (например, все едят овощи). В реальности внутри групп будет наблюдаться разброс в привесе, в связи с тем, что кроме рациона на вес животных влияют другие факторы: особенности обмена веществ, поведенческих реакций, стрессоустойчивость и др. Эти факторы, которые мы будем называть неучтенными факторами, приводят к появлению внутригрупповой дисперсии Dвнутргр. Средние по группам также имеют разброс (относительно общей средней), который объясняется влиянием изучаемого фактора - разных рационов. Это приводит к появлению межгрупповой дисперсии Dмежгр. Рассмотрим случай, приведенный на рисунке 22. Видно, что внутри групп разброс показателя веса больше, чем разброс средних значений по группам. Можно предположить, что вес животных в этих группах не сильно зависит от рациона питания, а на него больше влияют неучтенные в данном исследовании факторы.
Рисунок 22
Другой случай представлен на рисунке 23.
Рисунок 23
Таким образом, чтобы оценить влияние многоуровневого фактора на какую-то величину, необходимо сопоставить межгрупповую и внутригрупповую дисперсии. Межгрупповая дисперсия вносится изучаемым фактором, внутригрупповая дисперсия вносится какими-то другими (неучтенными) факторами. Если то фактор не влияет Если то фактор влияет Если то неопределенность Мы бы воспользовались этим правилом, если бы нам была доступна генеральная совокупность, но выборочные данные, в том числе выборочные дисперсии, ошибочны и в этом случае необходимо прибегнуть к теории проверки статистических гипотез. Выдвигаем Н(0) – фактор не влияет на изучаемый признак Задаемся уровнем значимости α; Вычисляем выборочную в нутригрупповую дисперсию, как среднее значение дисперсий по группам
Где - дисперсия показателя в каждой из k групп И выборочную межгрупповую дисперсию как отклонение средних в каждой группе от общей средней
ni –количество объектов в i –той группе - общая средняя
Вычисляем критерий Фишера Сравниваем с для заданного α; и числа степеней свободы (Приложение 7) где k – число групп, n -общее количество объектов обследования
Если вычисленное значение критерия Фишера меньше критического, то Н(0) принимается и делается вывод, что фактор не влияет на исследуемый показатель. В противном случае принимается Н(1).
|