Линейная корреляция
Обратимся к диаграмме на рисунке 24, на которой представлены значения роста и веса 14 испытуемых, отложенные на соответствующих осях, а на их пересечении поставлены точки. Эта диаграмма носит название диаграммы рассеяния. Из нее видно, что при увеличении роста вес также увеличивается, хотя это бывает не всегда – из практики мы знаем, что встречаются маленькие полные и высокие худые люди. Но общая тенденция все же такая, и мы можем даже провести воображаемую линию, по которой происходят изменения. То есть между ростом и весом имеется определенная связь – изменение роста приводит к изменению веса, и эта связь носит линейный характер.
Рисунок 24 Степень выраженности связи между случайными величинами отражает понятие корреляция. Количественно взаимосвязь между случайными величинами определяет коэффициент корреляции – r. • Коэффициент корреляции лежит в пределах - 1 ≤ r ≤ 1. • Если r> 0, то связь прямая - с увеличением значений одной величины другая также в среднем возрастает. • Если r < 0, то связь обратная - с увеличением величины Х1 соответствующие им значения X2 в среднем также уменьшаются. Значения линейного коэффициента корреляции и характер связи
Рисунок 25
Рисунок 26
Надо помнить, что корреляция выражает лишь математическую связь и, опираясь только на него, нельзя делать выводы о причинно-следственных отношениях. Например, может получиться высокий коэффициент корреляции между массой тела и знанием биостатистики, однако вряд ли одно является следствием другого, возможно оба признака меняются под воздействием третьего – возраста человека. В статистике используются параметрические и непараметрические коэффициенты корреляции. Для двух количественных случайных величин Х1 и Х2 (n -объем каждой выборки), если они нормально распределены, их линейную взаимосвязь можно вычислить используя параметрический коэффициент корреляции Пирсона
Одной из задач корреляционного анализа является проверка коэффициента корреляции на значимость. Дело в том, что выборочный коэффициент корреляции отличается от генерального, т.е. имеет определенную ошибку. При этом не исключена возможность, что взаимосвязь между величинами вовсе отсутствует. Поэтому требуется проверка нулевой гипотезы о равенстве нулю генерального коэффициента корреляции Н(0): r =0 Проверяется гипотеза по критерию Стъюдента:
Критическое значение критерия находится по таблице для заданного уровня значимости α; и числа степеней свободы f=n-2 (Приложение 2). Если │ tвыч│≥ tкрит то принимается Н(1) и делается вывод, что между величинами существует значимая корреляция. Если │ tвыч│< tкрит то принимается Н(0) и делается вывод о независимости исследуемых величин (коэффициент корреляции незначим). Полезно также вычислять величину r2 (в %). Она показывает, какая доля изменчивости одной величины объясняется влиянием другой величины.
|