Студопедия — Реферат 8 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Реферат 8 страница






 

поле зрения трубы

11 НВ 1

10

 

 

Рис. 60

Отсчет по рейке 1150 мм.

 

2Н-3Л

 

 

 

 

Рис. 61

 

На рисунке 61: 1 – окуляр; 3 – круглый уровень; 4 - кремальера; 5 – зрительная труба; 6 – основание, несет вертикальную ось вращения зрительной трубы; 7 – наводящий винт трубы;8 - пружина трегера с втулкой служит для закрепления нивелира на штативе становым винтом; 9 – подставка; 10 - элевационный винт; 11 – нониус, для отсчета углов по горизонтальному лимбу при угломерных работах; 12 – объектив; 13 – механический визир; 14 - коробка уровня; 15 – исправительный винт уровня при трубе; 17 – подъемный винт (3 штуки); 18 – лимб, для измерения горизонтальных углов.

Обе марки относятся к точным нивелирам. Нивелир 2Н-3Л – 2-ое поколение нивелира Н-3 – точный, с уровнем, элевационным винтом и лимбом, предназначен для измерения превышений, расстояний и горизонтальных углов. Средняя квадратическая погрешность измерения превышения на 1 км двойного хода 2,5 мм. Отличается от предшествующих марок нивелиров (НВ1, Н-3) отсутствием закрепительного винта трубы, наличием лимба, имеет трубу прямого изображения, современный дизайн.

 

9.3. Поверки нивелиров.

Рассмотрим поверки нивелиров с цилиндрическим уровнем и с компенсатором.

Схема основных осей нивелира с цилиндрическим уровнем

 

 

О

u u

       
   
 
 

 

 


m

V V

m u'

 

 


О u'

 

Рис. 62

На рисунке 62:

ОО – основная ось вращения прибора; uu – ось цилиндрического уровня; VV – визирная ось зрительной трубы; u'u' – ось круглого уровня, mm – средняя горизонтальная нить сетки.

Поверки выполняют после приведения прибора в рабочее положение и поверяют выполнение следующих условий:

1) Ось круглого уровня должна быть параллельна основной оси вращения нивелира. Уровень располагают между двумя подъемными винтами, вращая их одновременно в разные стороны, приводят пузырек круглого уровня на середину. Затем поворачивают трубу на 180º и наблюдают за перемещением пузырька. Если пузырек круглого уровня остался в нульпункте, условие поверки выполнено, в противном случае производят юстировку. При помощи исправительных винтов круглого уровня перемещают пузырек по направлению к нульпункту на половину схода. Окончательно возвращают пузырек на середину подъемными винтами. После исправления поверку повторяют.

2) Средняя горизонтальная нить сетки нитей должна быть перпендикулярна оси вращения инструмента. Наводят трубу на рейку, расположенную не менее чем в 30 метрах от нивелира. Работают наводящим винтом трубы, перемещая изображение рейки сначала в правое положение поля зрения трубы, затем в левое, каждый раз при этом берут отсчет по рейке. В случае совпадения отсчетов аКП и аКЛ условие поверки выполнено, в противном случае нужно развернуть сетку нитей на величину .

3) Ось цилиндрического уровня должна быть параллельна визирной оси зрительной трубы. Эта поверка считается основной поверкой нивелира. Один из способов ее выполнения – нивелирование «вперед» двух точек (рис. 63).

 

               
   
       
 

 


х

х

в

а i2

i1 а0 в0

А В А В

 

 


Рис. 63

h = iА – в0 = iА – (в – х) х = ≤ 4мм

h = а0 – iВ = (а – х) – iВ

hср. = - безошибочно. То же получается при нивелировании «из середины» при равных плечах.

Если х > 4мм, необходимо произвести юстировку:

1. Вычисляют верный отсчет по рейке а0 = а – х

2. Элевационным винтом наклоняют зрительную трубу и устанавливают на рейке отсчет а0. При этом пузырек цилиндрического уровня сместится из середины.

3. Исправительными винтами цилиндрического уровня пузырек уровня возвращают на середину.

4. Повторяют поверку.

 

10. Продольное нивелирование трассы

Трасса – это ось линейного сооружения типа: дороги, трубопроводы, линейные ускорители частиц, ЛЭП и другие (рис. 62).

Трассирование – комплекс работ для получения оптимального варианта трассы по отношению к ландшафту местности, рельефу, в экономическом отношении. Разделяют камеральное и полевое трассирование. Камеральное трассирование заключается в предварительном выборе оптимального варианта трассы с использованием карт мелкого, а затем более крупного масштабов. Выполняется оно способами: попыток, построения линии заданного уклона, по стереомоделям местности и автоматизированным методом.

Полевое трассирование выполняют или без предварительного выбора трассы на карте или выносят в натуру выбранный на карте вариант трассы. Все работы при этом разделяются на полевые и камеральные.

 

10.1. Полевые работы.

1) Рекогносцировка – осмотр местности и закрепление главных точек трассы начала трассы (НТ), конца трассы (КТ), створных точек (СТ), вершин углов поворота трассы (ВУ) деревянными или бетонными столбами высотой около одного метра (рис. 64).

На столбах масляной краской подписывают названия и номера точек.

2) Измерение углов поворота трассы – угла между предыдущим и последующим направлением трассы. Теодолитом измеряют правые по ходу горизонтальные углы и вычисляют углы поворота трассы. Если трасса поворачивает вправо, то φ1 = 180º- β1, угол поворота трассы влево вычисляют следующим образом φ2 = β2 – 180º.

3) Разбивка трассы: расчистка и закрепление главных точек кривых, пикетов, плюсовых точек, поперечников. После вычисления углов поворота трассы выбирают из «Таблиц для разбивки круговых кривых» или вычисляют по формулам элементы кривых: тангенс (касательная к кривой, Т), биссектрису (Б), длину кривой (К), домер (Д) (рис. 65).

 

 


ВУ № 1

φ1 КТ

 

β1

НТ ВУ № 2 φ2

 

β2

 

 

Рис. 64

 

 

Х

 

ВУ+48,65

φ

ПК2'

Т уПК2 Д

ПК2

хПК2 СК

КК

НК

ПК1 R

R β

R

       
   


НТ КТ

 

О

 

 

Рис. 65

R – радиус кривой; Т = R·tg(φ/2); К = ;

Б= ; Д = 2Т – К.

 

β = ; НК – ПК2 = НК – ПК2', где ρ=206265"≈57,3º.

Вычисляют пикетажное значение, то есть расстояние от предыдущего пикета, главных точек кривых по формулам:

ВУ Контроль: ВУ

-Т +Т

НК ……

+К -Д

КК КК

По пикетажным значениям находят на местности главные точки кривых и закрепляют их деревянными колышками.

Пикеты разбивают по прямым участкам трассы при помощи ленты или рулетки через каждые 100 метров по направлению, заданному визирным лучом теодолита. Если пикет попал на тангенс, по новому направлению откладывают домер первой кривой и, считая пикетаж полученной точки равным пикетажу вершины угла, дальнейшую разбивку трассы продолжают от нее. Кроме того, этот пикет нужно вынести на кривую (рис. 65). С этой целью вычисляют центральный угол β и прямоугольные координаты выносимого пикета. Так, для пикета 2 на рисунке хПК2 = Rsinβ; уПК2 = R – Rcosβ = 2Rsin2β/2.

Пикеты закрепляют деревянными колышками, которые забивают вровень с землей, окапывают канавкой в радиусе одного метра и забивают сторожок (деревянный колышек длиной 60см), на котором подписывают номер пикета.

На трассе закрепляют плюсовые точки – точки пересечения с характерными элементами ситуации и рельефа, определяют их пикетаж от предыдущего пикета. На косогорах или в местах неравномерного уклона трассы разбивают поперечники: закрепляют на трассе осевую точку поперечника, строят при помощи теодолита прямой угол к трассе вправо и влево от нее, то есть левое и правое плечи поперечника, на которых закрепляют плюсовые точки в местах изменения рельефа. Пикетаж этих точек определяют от осевой точки поперечника.

4) Горизонтальная съемка полосы местности вдоль трассы (от 20 метров и больше) способами прямоугольных координат и линейных засечек. При необходимости съемки рельефа выполняют тахеометрическую съемку, используя в качестве точек съемочного обоснования главные точки трассы, которые должны быть привязаны к пунктам государственной или местной геодезических сетей.

Параллельно с разбивкой трассы и съемкой местности ведут пикетажный журнал, куда заносят результаты разбивки и ведут абрис съемки.

5) Нивелирование трассы. Выполняют методом геометрического нивелирования способом «из середины». Нивелирование технической точности, при котором применяются технические нивелиры, допустимая максимальная длина плеч при хорошей видимости 150 метров, при плохой 100 метров. Километровые пикеты, реперы нивелируют как связующие точки, а плюсовые точки и точки поперечников – как промежуточные, только по черной стороне рейки.

По окончании полевых работ получают следующие документы: пикетажный журнал и журналы нивелирования трассы.

 

10.2. Камеральные работы

1) Ежедневный контроль разбивки пикетов и вычисления углов поворота трассы.

2) Математическая обработка результатов измерений заключается в вычислении допустимых и полученных невязок в теодолитных и нивелирных ходах и уравнивании этих ходов. Допустимая невязка в теодолитных ходах fβ = 3'√n, где n – количество сторон в ходе, для хода нивелирования fh = ±50 мм √L, где L – длина хода в километрах или fh = ± 10мм√n,

где n – число станций в ходе.

Кроме того, вычисляют ведомость прямых и кривых участков трассы, в которой записывают значения углов поворота трассы, пикетажные значения главных точек кривых, значения прямых и кривых участков трассы, домеров. Контроль вычислений выполняют по следующим формулам: ∑2Т - ∑К = ∑Д; ∑Р + ∑К = S =; φ прав. - φлев. = αкон. – αнач., где Р – прямые вставки, К – длины кривых участков трассы, S – длина трассы, φ – угол поворота трассы вправо и влево, α – дирекционный угол.

3) Графические работы заключаются в составлении плана трассы в масштабах 1:5000 и высотой сечения рельефа 2м в горной местности и 1:10000 и высотой сечения рельефа 5метров в равнинной. Кроме плана, вычерчивают продольный профиль трассы и профили поперечников. Продольный профиль составляют в масштабе: 1:5000, 1:10000 по горизонтали, по вертикали масштаб выбирают в 100 раз крупнее горизонтального для наглядности профиля. На продольном профиле проводят проектную линию, вычисляют проектные и рабочие отметки пикетов и плюсовых точек и объемы земляных работ. В графе «кривые» строят кривые по пикетажным значениям их главных точек, на прямых участках трассы над прямой записывают название и значение румба, под прямой – длину прямого участка.

Профили поперечников строят в одинаковом масштабе по горизонтали и вертикали.

 

 

11. Опорные геодезические сети

Служат исходными данными (координаты и высоты) для выполнения геодезических работ. В зависимости от наличия координат или высот бывают плановые и высотные.

а). Государственная геодезическая сеть. Плановые сети строятся способами триангуляции, трилатерации и полигонометрии 1, 2, 3, 4 классов. Триангуляция строится в виде треугольников, в которых измеряют горизонтальные углы, уравнивают их (считают и распределяют полученную угловую невязку), от базисных сторон (измеренных с большой точностью) по теореме синусов вычисляют горизонтальные проложения сторон треугольников, дирекционные углы, приращения координат и координаты пунктов. В качестве исходных координат для построения сетей 1 – ого класса берут координаты пунктов, полученных с высокой точностью из астрономических измерений. Эти пункты называют пунктами Лапласа. Второй класс развивают от первого, третий от пунктов первого и второго и так далее, то есть сгущают сети высокого класса точности сетями более низких классов. Для текущих геодезических работ чаще всего не нужны исходные данные, полученные с высокой точностью, кроме того, требуется большая густота пунктов, поэтому требуется развивать сети низких классов.

Полигонометрию строят в виде замкнутых или разомкнутых ходов, образующих полигоны. В них измеряют при помощи высокоточных и точных теодолитов горизонтальные и вертикальные углы и длины сторон инварными проволоками или дифференциальными светодальномерами. По полученным измерениям считают координаты пунктов. Закрепляют пункты государственной геодезической сети геодезическими центрами, грунтовыми и стенными реперами. Они несут координаты геодезического пункта. Грунтовый репер представляет собой металлическую трубу, с бетонным якорем, которая закладывается в пробуренную скважину и заливается бетоном. Реперы закладывают ниже глубины сезонного промерзания грунта. Верх репера находится на расстоянии 30 – 50 см ниже поверхности земли. После закладки репер окапывается в радиусе 1 метра или оформляется в виде люка и привязывается не менее чем к двум постоянным предметам местности с составлением абриса привязки. Координаты и высоту репера можно определять не раньше чем через неделю со дня закладки. Над грунтовыми реперами устанавливают наружные знаки в виде сигналов и пирамид для обеспечения видимости. Их высота зависит от высоты препятствия и бывает до 50 метров. Ось визирных цилиндров наружных знаков проходит через центр репера, над которым он установлен. Каталог координат и высот реперов и абрисы привязки сдают в геодезические отделы областного или городского управления архитектуры и градостроительства или Госгеонадзор.

Стенные реперы закладывают путем бетонирования металлических стержней или уголков в стены и фундаменты капитальных сооружений, водонапорных башен, в устои мостов и т.д., обычно на высоте 0,7 – 1 м над поверхностью земли.

Таблица 2

Характеристика сетей триангуляции и полигонометрии

Класс триангуляции Длина стороны, км Ср. квадратическая ошибка измерения
угла Базиса или стороны
  > 20 (20 – 25) 0,7" (0,4") 1:400000 (1:300000)
  7 – 20 (7 – 20) 1,0 (1,0) 1:300000 (1:250000)
  5 – 8 (3 – 8) 1,5 (1,5) 1:200000 (1:200000)
  2 – 5 (0,25 – 2) 2,0 (2,0) 1:200000 (1:25000)

 

В скобках указаны данные о полигонометрии.

Высотная государственная геодезическая сеть представляет собой нивелирные сети 1, 2, 3, 4 классов. Пункты плановой геодезической сети могут использоваться как пункты нивелирования. Методика выполнения работ изложена в Инструкции по нивелированию 1, 2, 3, 4 классов. Требования к построению сетей нивелирования представлены в таблице 3.

 

Таблица 3

Характеристика сетей нивелирования

 

Класс нивелирования Периметр полигона, км Невязки в полигонах
  наивысш. точность
  500 – 600 ±5мм √L
  150 – 300 ±10мм √L
    ±20мм √L

 

Пункты высотной государственной сети закрепляют на местности капитальными грунтовыми реперами, стенными реперами или марками.

б). Геодезические сети сгущения – это триангуляция и полигонометрия 1, 2 разрядов, развиваемые от пунктов государственной геодезической сети (рис. 66). Основные параметры сетей представлены в таблице 4. В скобках данные для полигонометрии 1, 2 разрядов.

 

 


Рис. 66

Таблица 4

Основные параметры сетей сгущения 1-го и 2-го разрядов

    Разряд Ср. квадратическая ошибка измерения   Длина сторон, км Число треугольников в цепи (сторон в ходе)
угол выходная сторона (длина)
  5" 1:50000 (1:10000) (0,12 – 0,8) (15)
  10" 1:20000 (1:5000) (0,08 – 0,35) (15)

 

Высотное положение пунктов определяют методом нивелирования 4 класса и техническим нивелированием (допустимая невязка ± 50 мм √L).

в). Съемочная геодезическая сеть (съемочное обоснование) создается с целью сгущения геодезической сети для производства топографических съемок. Способы развития – микротриангуляция, теодолитно – нивелирные ходы, тахеометрические и мензульные ходы, прямые, обратные и комбинированные засечки. Высоты пунктов получают методами геометрического нивелирования (микротриангуляция, теодолитно – нивелирные ходы), тригонометрического нивелирования (тахеометрические ходы). Длины сторон в ходах в первых двух случаях измеряют при помощи светодальномеров, мерных лент или рулеток, во втором – нитяным дальномером. Камеральные работы заключаются в следующем: контроль полевых документов – проверка графического материала, повторение всех вычислений, проведенных в полевых условиях; вычисление углов наклона и горизонтальных проложений длин сторон полигона; вычисление ведомости координат точек теодолитного хода (см. методические указания по выполнению расчетно – графических работ, часть 1).

г). Разбивочная геодезическая сеть служит для переноса в натуру и возведения сооружений – высокоточной и технической точности разбивки.

 

12. Топографические съемки

Съемка – совокупность измерительных действий на местности и вычислительных и графических работ в камеральных (аудиторных) условиях, выполняемых с целью составления плана или карты местности.

Съемки классифицируются по различным признакам:

1. По характеру снимаемых объектов: контурная или горизонтальная – в результате съемки местности на плане или карте получают положение контуров и предметов в горизонтальной плоскости, то есть ситуации; высотная – в результате съемки местности на плане или карте получают изображение только рельефа; контурно – высотная (топографическая) – на плане или карте получают изображение и ситуации, и рельефа.

2. По применяемым инструментам:

· теодолитная

· космическая

· тахеометрическая

· мензульная

· нивелирная

· фототопографическая

· глазомерная

· буссольная и т.д.

Все работы по съемке местности делятся на 2 стадии: полевые и камеральные. Полевые работы заключаются в непосредственном измерении определяемых величин в поле. Камеральные работы делятся на вычислительные и графические.

 

12.1. Теодолитная съемка

Целью теодолитной съемки является получение контурного плана местности, то есть ситуации. Съемочным обоснованием для нее служат полигоны (или теодолитные ходы) замкнутой или разомкнутой формы. Длина стороны полигона колеблется от 50 до 400 метров. В исключительных случаях допускается длина 800 метров. При большой величине участка внутри замкнутого полигона прокладывают диагональный ход, который служит одновременно и контролем правильности прокладывания основного хода.

Длины сторон измеряют с точностью не менее 1:1500 – 1:2000. Точность измерения углов должна быть не ниже 1'.Основные инструменты: теодолит, лента (дальномер), рулетка, эклиметр, эккер.

12.1.1. Полевые работы

при теодолитной съемке заключаются в следующем:

1.Рекогносцировка (разведка) местности. Цель – ознакомиться с участком, оптимально выбрать и закрепить точки теодолитного хода, отыскать точки геодезической сети (или сети сгущения) с целью привязки.







Дата добавления: 2015-06-15; просмотров: 480. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2024 год . (0.066 сек.) русская версия | украинская версия