Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Средняя квадратическая погрешность измерений. Предельная погрешность





 

Для оценки степени точности ряда измерений одной и той же величины недостаточно знать арифметическое среднее погрешностей измерений, т.к. в ряде измерений может быть не отражено наличие сравнительно крупных погрешностей разных знаков, поскольку последние взаимно компенсируются.

И Гаусс предложил критерий оценки точности измерений, не зависящий от знаков отдельных сравнительно крупных погрешностей ряда – среднюю квадратическую погрешность.

Средняя квадратическая ошибка (погрешность) измерений – это корень квадратный из арифметического среднего квадратов истинных погрешностей и вычисляется по формуле:

 

 

.

 

Поскольку истинное значение измеряемой величины Х не известно, то среднюю квадратическую погрешность m вычисляют по уклонениям

 

Через уклонения арифметического среднего среднюю квадратическую погрешность определяют по формуле Бесселя:

m = , где [ 2] – сумма квадратов вероятнейших ошибок; n – число измерений, n-1 – число избыточных измерений.

Анализ кривой нормального распределения Гаусса показывает, что при достаточно большом числе измерений одной и той же величины случайная погрешность измерения может быть:

Больше средней квадратической m в 32 случаях из 100;

Больше удвоенной средней квадратической 2m в 5 случаях из 100;

Больше утроенной средней квадратической 3m в 3 случаях из 1000.

Маловероятно, чтобы случайная погрешность измерения оказалась больше утроенной средней квадратической, поэтому утроенную среднюю квадратическую погрешность считают предельной:

В качестве предельной часто принимают среднюю квадратическую погрешность, равную:

с вероятностью ошибки равной порядка 1%.

 







Дата добавления: 2015-06-15; просмотров: 639. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия