Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементы теории погрешностей измерений





Измерением называют процесс сравнения измеряемой величины с другой, принятой за единицу измерения известной величины.

Точность измерений – качество измерений, определяющее близость их результатов к точному значению измеряемой физической величины.

Стандарт – критерий (показатель, мера) оценки точности результатов измерений.

Измерения различают:

1. Прямые измерения (простейшие – измерение длин линий землемерной лентой или рулеткой).

2. Косвенные – основываются на использовании некоторых математических зависимостей между искомыми и непосредственно измеряемыми величинами (площадь прямоугольника на местности определяют, измерив длины его сторон).

3. Дистанционные измерения основываются на использовании ряда физических процессов и явлений и, связаны с использованием современных технических средств: светодальномеров, электронных тахеометров, фототеодолитов и т.д.

На точность проводимых измерений влияют ряд факторов и условий: сам объект измерений, используемые единицы измерений, технические средства, технология и методы производства работ, состояние окружающей среды, опыт производителей и др. В связи с этим измерения, производимые в условиях, при которых все получаемые результаты можно считать одинаково надежными, называются равноточными и, наоборот, когда результаты нельзя считать одинаково надежными – неравноточными.

Измерения на местности являются важной частью всех геодезических работ. Любые измерения сопровождаются ошибками - погрешностями. Различают следующие виды ошибок (погрешностей): грубые, систематические и случайные. Грубые ошибки измерений или промахи должны быть выявлены и исключены. С этой целью выполняются повторные измерения и вычисления. Систематические ошибки возникают в результате влияние какой-то причины. Например, из-за неисправности инструмента. Источник систематической ошибки необходимо выявить и устранить.

Случайные ошибки являются следствием различных факторов. Закономерность возникновения случайных ошибок при небольшом ряде измерений не обнаруживается. Для уменьшения влияния случайных погрешностей на результаты измерений прибегают к многократным измерениям, к улучшению условий работы и др.

Исследованиями установлены следующие свойства случайных ошибок:

1. по абсолютному значению они не превосходят определенной величины, соответствующей данным условиям измерений,

2. положительные и отрицательные случайные ошибки встречаются одинаково часто,

3. чем больше абсолютная величина случайной ошибки, тем реже она встречается в данном ряду измерений,

4. с увеличением числа измерений среднее арифметическое из случайных ошибок стремится к нулю.

Поведение случайных погрешностей в ряду равноточных измерений (их свойства) подчиняется закону нормального распределения Гаусса.

Если обозначить точное значение какой-либо величины через Х, а ее измеренное значение через l, то абсолютная величина случайной погрешности и ее знак определяется разностью:

 

∆= l – Х

 

Разность между результатом измерения некоторой величины l и ее истинным значением Х называют абсолютной (истинной) погрешностью.

Абсолютная погрешность не является исчерпывающе полным показателем точности выполненных работ. Например, если некоторая линия, фактическая длина которой составляет 1000 м, измерена землемерной лентой с ошибкой 0,50 м, а отрезок длиною 200 м – с ошибкой 0,20 м, то, несмотря на то, что абсолютная погрешность первого измерения больше второго, все же первое измерение было выполнено с точностью в два раза более высокой. Поэтому необходимо ввести понятие относительной погрешности:

 

ξ=∆/ l

Отношение абсолютной погрешности измеряемой величины ∆ к самой этой величине l называют относительной погрешностью.

Относительные погрешности ε всегда выражаются дробью с числителем, равным единице. Так, в приведенном выше примере относительная погрешность первого измерения составляет 1/2000, а второго – 1/1000.

 







Дата добавления: 2015-06-15; просмотров: 865. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия