Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Исключение грубых ошибок измерений





Получив выборку хп = 1,..., хп) наблюдений X с функцией распределения Р(х), следует убедиться, что она действительно соответствует этой функции распределения. Дело в том, что в процессе измерений предполагаемая статистическая обстановка может нарушиться, и в связи с этим среди реализаций х1,..., хп могут появляться ошибочные, то есть не соответствующие Р(х) значения. Обычно в качестве ошибочных подразумевают и и называют их грубыми ошибками, если установ­лено их несоответствие закону F п(х).

Если функция F (х) известна, то вопрос об ошибочности может быть решен следующим образом. Зная F (х), можно найти F (п)(х) — функцию распределения Х(п) = . Тогда, задаваясь вероятностью β≈1 практически достоверного события, из уравнения:

(1.10)

можно найти границу t β, правее которой появление в соответствии с принципом практической уверенности невозможно.

Отсюда следует решающее правило: если то считают грубой ошибкой; в противном случае считают согласующейся c законом распределения F (х).

Заметим, в случае независимых измерений зависимость для определения t β можно записать в виде: F ( t β)=

Аналогично решается вопрос об ошибочности . Здесь определяется граница t а из условия:

(1.11)

 

где - вероятность практически невозможного события. Затем применяют решающее правило принципа практической уверенности: хmiп - грубая ошибка, если хmiп <t α; хmiп не противоречит F (х) - в противном случае. При независимых измерениях находится из уравнения

(1.12)

 

Чаще F(х) бывает неизвестной. Тогда для решения поставленной задачи применяют частные приемы. Например, если X Ν(т2), то есть F(х) - нормальный закон с неизвестными параметрами т = М(х) и σ 2=D(х), то строят вспомогательную случайную величину

(1.13)
Здесь     (1.14)
  (1.15)

 

Затем устанавливают ее функцию распределения и д алее находят верхнюю границу допустимых значении Т из уравнения

Верхней границей допустимых значений , становится, таким образом, величина

= (1.16)  

где , s – реализации случайных величин и S в наблюдениях, определяемых, формулами (1.14), (1.15). В итоге получаем следующее частное решающее правило:

если то она считается соответствующей распределению Ν(т2); в противном случае величина считается грубой ошибкой \

Анализ ошибочности при X Ν(т2) выполняется аналогично по решающему правилу:

= , (1.17)  

 

если хmiп>; то хmiп считается соответствующей закону Ν(т2); в противном случае величину хmiп считают грубой ошибкой.

Для определения границ составлены специальные таблицы, входом которых служат

Используя зависимости

  (1.18)
  (1.19)

 

можно получить сведения о необходимом количестве измерений, которые при принятой вероятности определяют границы ошибок измерений. Наглядно это следует из графиков и

Если на эти графики нанести границы, определяемые зависимостями

  (1.20)

 

то наглядно получается метрологическая информация о процессе.







Дата добавления: 2015-06-15; просмотров: 436. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия