Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Различные интерпретации производной функции





В зависимости от целей, области применения и используемого математического аппарата используют различные способы записи производных. Так, производная n-го порядка может быть записана в нотациях:

§ Лагранжа , при этом для малых n часто используют штрихи и римские цифры:

и т. д.

Такая запись удобна своей краткостью и широко распространена; однако штрихами разрешается обозначать не выше третьей производной.

§ Лейбница, удобная наглядной записью отношения бесконечно малых (только в случае, если — независимая переменная; в противном случае обозначение верно лишь для производной первого порядка):

§ Ньютона, которая часто используется в механике для производной по времени функции координаты (для пространственной производной чаще используют запись Лагранжа). Порядок производной обозначается числом точек над функцией, например:

— производная первого порядка по при , или — вторая производная по в точке и т. д.

§ Эйлера, использующая дифференциальный оператор (строго говоря, дифференциальное выражение, пока не введено соответствующее функциональное пространство), и потому удобная в вопросах, связанных с функциональным анализом:

, или иногда .

§ В вариационном исчислении и математической физике часто применяется обозначение U с индексом x (без штрихов), что означает производная U по x.

Конечно, при этом необходимо не забывать, что служат все они для обозначения одних и те же объектов:

ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ПРИЗВОДНОЙ

значение производной f ' (x 0) равняется угловому коэффициенту касательной к графику функции y = f (x) в точке M 0(x 0, f (x 0));

f '(x 0) = tg Φ, где Φ - угол наклона касательной к оси 0Х

Уравнение касательной к графику f(x) в точке M 0(x 0, f (x 0))

  y – f (x 0) = f ' (x 0)(x - x 0).

Уравнение нормали к графику f(x) в точке M 0(x 0, f (x 0))

  .  






Дата добавления: 2015-06-15; просмотров: 582. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия