Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Различные интерпретации производной функции





В зависимости от целей, области применения и используемого математического аппарата используют различные способы записи производных. Так, производная n-го порядка может быть записана в нотациях:

§ Лагранжа , при этом для малых n часто используют штрихи и римские цифры:

и т. д.

Такая запись удобна своей краткостью и широко распространена; однако штрихами разрешается обозначать не выше третьей производной.

§ Лейбница, удобная наглядной записью отношения бесконечно малых (только в случае, если — независимая переменная; в противном случае обозначение верно лишь для производной первого порядка):

§ Ньютона, которая часто используется в механике для производной по времени функции координаты (для пространственной производной чаще используют запись Лагранжа). Порядок производной обозначается числом точек над функцией, например:

— производная первого порядка по при , или — вторая производная по в точке и т. д.

§ Эйлера, использующая дифференциальный оператор (строго говоря, дифференциальное выражение, пока не введено соответствующее функциональное пространство), и потому удобная в вопросах, связанных с функциональным анализом:

, или иногда .

§ В вариационном исчислении и математической физике часто применяется обозначение U с индексом x (без штрихов), что означает производная U по x.

Конечно, при этом необходимо не забывать, что служат все они для обозначения одних и те же объектов:

ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ПРИЗВОДНОЙ

значение производной f ' (x 0) равняется угловому коэффициенту касательной к графику функции y = f (x) в точке M 0(x 0, f (x 0));

f '(x 0) = tg Φ, где Φ - угол наклона касательной к оси 0Х

Уравнение касательной к графику f(x) в точке M 0(x 0, f (x 0))

  y – f (x 0) = f ' (x 0)(x - x 0).

Уравнение нормали к графику f(x) в точке M 0(x 0, f (x 0))

  .  






Дата добавления: 2015-06-15; просмотров: 582. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия