Ограниченная функция. Ограниченность непрерывных функции в замкнутом интервале
Ограниченная функция. Пусть функция (одного или многих переменных) определена на множестве D. Если множество ее значений ограничено, когда аргумент (аргументы) пробегают все множество D, функция называется ограниченной. Соответственно, если множество значений функции ограничено сверху (снизу), то функция также называется ограниченной сверху (снизу). Пример 1. Рассмотрим функцию Она ограничена на луче [1; +) (её модуль на этом множестве не больше 1), но не ограничена и не ограничена сверху на интервале (0; 1), хотя на нём ограничена снизу (например, числом 1). На луче (–∞; 1) она ограничена (её модуль на этом множестве также не больше 1), не ограничена и не ограничена снизу на интервале (–1; 0), хотя на нём она ограничена сверху (например, числом 0 или числом –1). Все указанные свойства хорошо видны на графике функции. Теорема (об ограниченности непрерывной функции) Пусть функция непрерывна на отрезке . Тогда ограничена на , то есть существует такая постоянная , что при всех . Доказательство. Предположим обратное: пусть не ограничена, например, сверху. Тогда все множества , , , не пусты. По предыдущей лемме в каждом из этих множеств имеется наименьшее значение , . Покажем, что Действительно, . Если какая-либо точка из , например , лежит между и , то то есть -- промежуточное значение между и . Значит, по теореме о промежуточном значении непрерывной функции, существует точка , такая что , и . Но , вопреки предположению о том, что -- наименьшее значение из множества . Отсюда следует, что при всех . Точно так же далее доказывается, что при всех , при всех , и т. д. Итак, -- возрастающая последовательность, ограниченная сверху числом . Поэтому существует . Из непрерывности функции следует, что существует , но при , так что предела не существует. Полученное противоречие доказывает, что функция ограничена сверху. Аналогично доказывается, что ограничена снизу, откуда следует утверждение теоремы.
|