Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кусочно-непрерывная функция. Скачок функции





Теорема (о непрерывности сложной функции). Пусть функция непрерывна в точке , а функция непрерывна в точке . Тогда сложная функция непрерывна в точке .

Всевозможные арифметические комбинации простейших элементарных функций, которые рассматривают в школьном курсе алгебры и начал анализа, мы будем называть элементарными функциями. Например, является элементарной.

Все элементарные функции непрерывны в области определения. Так что всюду непрерывна, так как всюду определена, а функция разрывна в точке .

Дадим теперь классификацию точек разрыва функции. Возможны следующие случаи.

1. Если и существуют и конечны, но не равны друг другу, то точку называют точкой разрыва первого рода. При этом величину называют скачком функции в точке .

Пример 20. Исследовать на непрерывность функцию

Решение. Эта функция может претерпевать разрыв только в точке , где происходит переход от одного аналитического выражения к другому, а в остальных точках области определения функция непрерывна.

Найдем левосторонний предел функции при . Cлева от точки , т.е. при , а .

Справа от точки . Тогда . Значение функции в точке , т.е. . Функция в точке имеет разрыв первого рода. Это видно и на графике функции (рис. 25).

 

 

Рис. 25

 

2. Если в точке , но в точке функция либо не определена, либо , то точка является точкой устранимого разрыва.

Последнее объясняется тем, что если в этом случае доопределить или видоизменить функцию , положив , то получится непрерывная в точке функция.

 

 







Дата добавления: 2015-06-15; просмотров: 755. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия