Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференцируемость функции во внутренней точке





Пусть функция задана в некоторой области , и -- внутренняя точка этой области. Пусть -- произвольная точка этой же области . Разность называется приращением аргумента ; , где . Разность значений функции называется приращением, или полным приращением функции в точке , соответствующим приращению аргумента ; -- это функция от точки и приращения .

Предположим, что приращение функции можно представить в виде

(7.2)

где -- некоторые числа. Подчеркнём, что эти числа не зависят от , но могут измениться, если сменить точку . Относительно величины мы предположим, что это функция, при базе являющаяся величиной большего порядка малости, чем . Это означает, если вспомнить определение бесконечно малой величины большего порядка малости относительно другой бесконечно малой, что

Определение 7.11 Если указанное представление (7.2) имеет место, то функцию называют дифференцируемой в точке , а линейную относительно функцию

то есть главную линейную часть приращения функции, -- дифференциалом функции в точке . Если функция является дифференцируемой в любой точке открытой области , то функцию называют дифференцируемой в области .

Таким образом, приращение дифференцируемой функции можно представить в виде суммы дифференциала , то есть линейной части приращения, и остатка , который имеет более высокий порядок малости, чем приращение :

Теорема 7.8 Дифференцируемая в точке функция является непрерывной в этой точке. Доказательство. Действительно, если , то стремятся к 0 все слагаемые дифференциала: они имеют вид ; множитель не зависит от , то есть постоянен, а , поскольку Величина также стремится к 0, так как имеет даже больший порядок малости, чем . Значит, . Но условие как раз и означает, что при , то есть что функция непрерывна в точке .

 







Дата добавления: 2015-06-15; просмотров: 457. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия