Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры. § Функция f(x) = x2 определена и дифференцируема в любой вещественной точке





§ Функция f (x) = x 2 определена и дифференцируема в любой вещественной точке. Действительно, имеет место представление

f (x) = f (x 0) + 2 x 0(xx 0) + (xx 0)2.

Таким образом имеем: f '(x 0) = 2 x 0. Уравнение касательной для этой функции имеет вид: Дифференциал этой функции задается формулой: df (x 0)(h) = 2 x 0 h.

§ Функция f (x) = | x | является непрерывной, но не является дифференцируемой в точке x 0 = 0, её производная в этой точке не существует. Соответственно, в этой точке не определен и её дифференциал.

уемая функция

Непрерывность дифференцируемой функции

Теорема 1. Пусть функция y = f(x) дифференцируема на интервале (a, b). Тогда функция f непрерывна на (a, b).

Доказательство

Возьмем произвольное фиксированное число x (a,b).

По условию теоремы

Следовательно, в малой окрестности числа x0 можно определить функцию α = α(Δx), стремящуюся к нулю при такую, что

Но тогда и, следовательно, функция f непрерывна при x = x0. Так как число x0 – произвольное, то функция f непрерывна на всем интервале (a, b).

Теорема доказана.

Из доказанной теоремы непосредственно вытекает, что в точках разрыва функция не может быть дифференцируемой.

Однако из непрерывности функции на интервале (a, b) не следует дифферецируемость функции в каждой точке интервала (a, b). Например, функция непрерывна на всей числовой прямой, но эта функция недифференцируема при x = 0. В самом деле, предел (1) не зависит от знака приращения аргумента Δx. Для функции же имеем, если x = 0 придать приращение Δx > 0, то Δy = Δx, а если Δx < 0, то Δy = − Δx. Таким образом,

Следовательно, функция недифференцируема при x = 0.







Дата добавления: 2015-06-15; просмотров: 534. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия