Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры. § Функция f(x) = x2 определена и дифференцируема в любой вещественной точке





§ Функция f (x) = x 2 определена и дифференцируема в любой вещественной точке. Действительно, имеет место представление

f (x) = f (x 0) + 2 x 0(xx 0) + (xx 0)2.

Таким образом имеем: f '(x 0) = 2 x 0. Уравнение касательной для этой функции имеет вид: Дифференциал этой функции задается формулой: df (x 0)(h) = 2 x 0 h.

§ Функция f (x) = | x | является непрерывной, но не является дифференцируемой в точке x 0 = 0, её производная в этой точке не существует. Соответственно, в этой точке не определен и её дифференциал.

уемая функция

Непрерывность дифференцируемой функции

Теорема 1. Пусть функция y = f(x) дифференцируема на интервале (a, b). Тогда функция f непрерывна на (a, b).

Доказательство

Возьмем произвольное фиксированное число x (a,b).

По условию теоремы

Следовательно, в малой окрестности числа x0 можно определить функцию α = α(Δx), стремящуюся к нулю при такую, что

Но тогда и, следовательно, функция f непрерывна при x = x0. Так как число x0 – произвольное, то функция f непрерывна на всем интервале (a, b).

Теорема доказана.

Из доказанной теоремы непосредственно вытекает, что в точках разрыва функция не может быть дифференцируемой.

Однако из непрерывности функции на интервале (a, b) не следует дифферецируемость функции в каждой точке интервала (a, b). Например, функция непрерывна на всей числовой прямой, но эта функция недифференцируема при x = 0. В самом деле, предел (1) не зависит от знака приращения аргумента Δx. Для функции же имеем, если x = 0 придать приращение Δx > 0, то Δy = Δx, а если Δx < 0, то Δy = − Δx. Таким образом,

Следовательно, функция недифференцируема при x = 0.







Дата добавления: 2015-06-15; просмотров: 534. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия