Правила иследования функций
1) Отыскивается область определения функции. Исследование функции начинают с поиска области определения. Под областью определения понимается множество всех значений аргумента, при которых функция определена, то есть может быть вычислена. При нахождении области определения функции следует обращать внимание на выражения содержащие дроби, так как, знаменатель дроби не может обращаться в нуль. Следует обращать внимание на корни, так как, подкоренное выражение должно быть неотрицательным. Особое внимание следует обратить на логарифмы, входящие в выражение. Если функция содержит логарифм , то на область определения накладываются ограничения исходя из неравенств .
3) Находим точки пересечения графика функции с осями координат. Абсцисса пересечение с осью ищется исходя из уравнения . Ордината пересечение с осью ищется подстановкой значения в выражение функции Если пересечение с осью найти не удаётся, то обходятся без него. Обычно поиск пересечения с осью не представляет труда. 4) Исследуется непрерывность функции, находятся точки разрыва. Функция называется непрерывной в точке , если она определена в этой точке и существует предел , который равен значению функции. То есть .
5) Ищутся асимптоты графика функции. Прямая называется асимптотой графика функции, если расстояние от точек графика до этой прямой стремится к нулю при бесконечном удалении от начала координат вдоль графика функции. Образно выражаясь, график как бы прилипает к асимптоте. Асимптоты бывают вертикальные, наклонные и горизонтальные. Вертикальные асимптоты ищутся по точкам разрыва второго рода. Если в точке функция терпит бесконечный разрыв, то вертикальная прямая является вертикальной асимптотой. Например, в точке функция имеет разрыв второго рода. Следовательно, уравнение вертикальной асимптоты . График функции имеет наклонную асимптоту при (соответственно при ), если существуют конечные пределы (соответственно ). При этом уравнение наклонной асимптоты . Если хотя бы один из двух пределов не существует (или бесконечен), то соответствующей наклонной асимптоты нет. Если и существует конечный предел , то асимптота является горизонтальной и её уравнение . 6) Находятся критические точки и интервалы монотонности. Функция имеет максимум в точке , если её значение в этой точке больше, чем её значения во всех точках некоторой окрестности, содержащей точку . Функция имеет минимум в точке , если её значение в этой точке меньше, чем её значения во всех точках некоторой окрестности, содержащей точку . Для определения критических точек находим производную по соответствующим правилам и используя таблицу производных. В критических точках производная равна нулю или не существует. Определяем знак производной в интервалах между критическими точками. Если на некотором интервале производная положительна, то функция возрастает. Если производная отрицательна, то на данном интервале функция убывает. 7) Ищутся точки перегиба и интервалы выпуклости. Для определения точек перегиба находят вторую производную. В точке перегиба вторая производная равна нулю или не существует. По знаку второй производной в интервалах между точками перегиба определяют направление выпуклости графика функции. Если вторая производная положительна, то график функции выпуклый вниз. Если вторая производная отрицательная, то график функции выпуклый вверх. 8) На основании проведённого исследования строим график. Если необходимо вычисляем значение функции в некоторых промежуточных точках.
|