Функции предложения и их свойства
Функция предложения S(p) описывает зависимость между рыночной ценой товара и его предложением на изолированном рынке этого товара. В общем случае следует исходить из того, что рассматриваемый продукт производится на достаточно большом количестве конкурирующих между собой предприятий. В такой ситуации естественно считать, что каждый производитель стремится к наибольшей прибыли, и его индивидуальный выпуск продукта увеличивается по мере роста цены на этот продукт. Но тогда и общее предложение товара на рынке S(p), как сумма индивидуальных выпусков, является возрастающей функцией цены, т.е. S¢(p)>0. В более специфических ситуациях (олигополия, монополия) поведение предприятия, как показывает пример, приведенный выше, необязательно определяется стремлением к максимальной прибыли; поскольку при повышении цены производитель может обеспечить себе заметный прирост прибыли и без увеличения объема выпуска. Таким образом, строго говоря, должны быть исследованы случаи, когда S(p)=const или даже S¢(p)<0 (рис. 6.9). Рис. 6.9. Возрастающая, неизменная и убывающая функции предложения
Здесь представлено семейство функций предложения. Линия AB соответствует совершенной конкуренции и стремлению производителей к получению максимальной прибыли, линия AC отвечает неизменному выпуску, который, тем не менее, дает возможность вести хозяйство с приличной прибылью в условиях несовершенной конкуренции; линия АД представляет снижающийся объем производства, что возможно в условиях монополии и резкого роста цен. В дальнейшем анализе в качестве основного рассматривается состояние совершенной конкуренции и рост предложения в зависимости от роста цен. Для практических расчетов применяются функции предложения двух основных видов, параметры которых определяются путем обработки статистических данных: 1) линейная функция: S(p) = b0 + b1p (b0 > 0; b1 > 0); 2) степенная функция: S(p) = b0 pb (b0 > 0; b > 0). Коэффициент эластичности предложения по цене (ESp) показывает, на сколько процентов увеличится предложение товара, если его цена вырастает на 1%. Для линейной функции предложения: где – средние значения цены и предложения по таблице наблюдений. Для степенной функции: Для функции предложения, определяемой как решение рассмотренной выше задачи оптимизации прибыли (см. *) имеем: Эластичность предложения по цене: т.е. полностью определяется характером постоянных и переменных издержек. В более общем случае объем предложения j -того товара рассматривается не только в зависимости от его цены (pj), но и от цен на другие товары. В этой ситуации система функций предложения имеет вид: , где n – количество наименований товаров. Товары i и j называются конкурирующими, если перекрестная эластичность: т.е. при увеличении цены уменьшается выпуск j -того товара; товары являются комплектными, если В этом случае рост производства одного товара необходимо вызывает увеличение выпуска другого. Моделирование издержек и прибыли предприятия (фирмы) В основе построения моделей поведения производителя (отдельного предприятия или фирмы; объединения или отрасли) лежит представление о том, что производитель стремится к достижению такого состояния, при котором ему была бы обеспечена наибольшая прибыль при сложившихся рыночных условиях, т.е. прежде всего при имеющейся системе цен. Наиболее простая модель оптимального поведения производителя в условиях совершенной конкуренции имеет следующий вид: пусть предприятие (фирма) производит один продукт в количестве y физических единиц. Если p – экзогенно заданная цена этого продукта и фирма реализует свой выпуск полностью, то она получает валовый доход (выручку) в размере: R(y)=py. В процессе создания этого количества продукта фирма несет производственные издержки в размере C(y). При этом естественно считать, что C¢(y)>0, т.е. издержки возрастают с увеличением объема производства. Также обычно полагают, что C¢¢(y)>0. Это означает, что дополнительные (маргинальные) издержки на производство каждой дополнительной единицы продукции возрастают по мере увеличения объема производства. Это предположение связано с тем, что при рационально организованном производстве, при малых объемах могут быть использованы лучшие машины и высококвалифицированные работники, которых уже не окажется в распоряжении фирмы, когда объем производства вырастет. На рис. 6.10 представлены типичные графики функций R(y) и C(y). Производственные издержки состоят из следующих составных частей: 1) материальные затраты Cm, в число которых входят расходы на сырье, материалы, полуфабрикаты и т.п. Разность между валовым доходом и материальными затратами называется добавленной стоимостью (условно чистой продукцией) VA = Z = R – Cm; 2) расходы на оплату труда Cl; 3) расходы, связанные с использованием, ремонтом машин и оборудования, амортизация, т.н. оплата «услуг капитала» Ck; 4) дополнительные расходы Cr, связанные с расширением производства, строительством новых зданий, подъездных путей, линий связи и т.д. Совокупные производственные издержки: C = Cm + Cl + Ck + Cr Как уже было отмечено выше С= С(y), однако эта зависимость от объема выпуска (у) для разных видов издержек различна. А именно имеют место: а) постоянные расходы C0, которые практически не зависят от y, в т.ч. оплата административного персонала, аренда и содержание зданий и помещений, амортизационные отчисления, проценты за кредит, услуги связи и т.п.: б) пропорциональные объему выпуска (линейные) затраты C1, сюда входят материальные затраты Cm, оплата труда производственного персонала (часть Cl), расходы по содержанию действующего оборудования и машин (часть Ck) и т.п. C1 = ay, где а – обобщенный показатель затрат указанных видов в расчете на одно изделие; в) «сверхпропорциональные» (нелинейные) затраты С2, в составе которых выступают приобретение новых машин и технологий т.е. затраты типа Сr), оплата сверхурочного труда и т.п. Для математического описания этого вида затрат обычно используется степенная зависимость: С2 = byh (h > 1). Таким образом, для представления совокупных издержек можно использовать модель С(y) = C0 + C1 + C2 = C0 + ay + byh. (2.1). (Заметим, что условия C¢(y)>0, C¢¢(y)>0 для этой функции выполнены). Рассмотрим возможные варианты поведения предприятия (фирмы) для двух случаев: 1) Предприятие имеет достаточно большой резерв производственных мощностей и не стремится к расширению производства, поэтому можно полагать, что C2 = 0 и совокупные издержки являются линейной функцией объема выпуска: С(y) = C0 + ay Прибыль составит: П(y) = R – C = py – (C0 + ay). Очевидно, что при малых объемах выпуска 0 £ y £ yw фирма несет убытки, т.к. П < 0. Здесь yw – точка безубыточности (порог рентабельности), определяемая соотношением П(yw) = 0. Если y > yw, то фирма получает прибыль и окончательное решение об объеме выпуска зависит от состояния рынка сбыта производимой продукции (рис 6.10). В этом случае имеются две точки безубыточности , причем положительную прибыль фирма получит, если объем выпуска У, удовлетворяет условию .
Рис. 6.10. Линии выручки и издержек предприятия
На этом отрезке в точке достигается наибольшее значение прибыли, таким образом, существует оптимальное решение задачи о максимизации прибыли. В точке А, соответствующей издержкам при оптимальном выпуске, касательная к кривой издержек С параллельна прямой линии дохода R. Следует заметить, что окончательное решение фирмы также зависит от состояния рынка, но с точки зрения соблюдения экономических интересов, ей следует рекомендовать оптимизирующее значение выпуска (рис. 6.11). В общем случае, когда С(у) является нелинейной возрастающей и выпуклой вниз функцией (т.к. C¢(y)>0 и C¢¢(y)>0) объема выпуска, ситуация полностью аналогична той, которая рассмотрена в пункте 2. По определению, прибылью считается величина П(y) = R(y) – C(y). Рис 6.11. Оптимальный объем выпуска
Точки безубыточности , определяются из условия равенства прибыли нулю, а максимальное ее значение достигается в точке , которая удовлетворяет уравнению: П¢( ) = 0 или R¢( ) – C¢( ) = 0. Таким образом, оптимальный объем производства характеризуется тем, что в этом состоянии маргинальный валовый доход (R¢(y)) в точности равен маргинальным издержкам C¢(y). В самом деле, если y < , то R¢( y ) > C¢ ( y ), и тогда следует увеличить выпуск продукции, поскольку ожидаемый дополнительный доход превысит ожидаемые дополнительные издержки. Если же y > , то R¢( y ) < C¢( y ), и всякое увеличение объема уменьшит прибыль, поэтому естественно рекомендовать уменьшить объем производства и придти в состояние y = (рис. 6.12).
Рис. 6.12. Точка максимума прибыли и зона безубыточности: (*). Нетрудно видеть, что при увеличении цены (р) оптимальный выпуск (а также прибыль) увеличиваются, т.е. Это верно также и в общем случае, т.к. Пример. Фирма производит сельскохозяйственные машины в количестве у штук, причем объем производства в принципе может изменяться от 50 до 220 штук в месяц. При этом естественно увеличение объема производства потребует увеличения затрат, как пропорциональных так и сверхпропорциональных (нелинейных), поскольку потребуется приобрести новое оборудование и расширить производственные площади. В конкретном примере будем исходить из того, что общие издержки (себестоимость) на производство продукции в количестве у изделий выражаются формулой:
C(y) = 1000 + 20y + 0.1y2 (тыс. руб.).
Это означает, что постоянные издержки C0 = 1000 (т. руб.) пропорциональные затраты C1 = 20y, т.е. обобщенный показатель этих затрат в расчете на одно изделие равен а = 20 тыс. руб.; а нелинейные затраты составят C2 = 0.1y2 (b = 0.1). Приведенная формула выше для издержек является частным случаем общей формулы, где показатель h=2. Для нахождения оптимального объема производства воспользуемся формулой точки максимума прибыли (*), согласно которой имеем: . Совершенно очевидно, что объем производства, при котором достигается максимальная прибыль, весьма существенно определяется рыночной ценой изделия Р. В приводимой далее таблице, представлены результаты расчета оптимальных объемов при различных значениях цены от 40 до 60 тыс. рублей за изделие. В первом столбце таблицы фигурируют возможные объемы выпуска у, второй столбец содержит данные о полных издержках С(у), в третьем столбце представлена себестоимость в расчете на одно изделие: . Четвертый столбец характеризует значения указанных выше маргинальных издержек МС, которые показывают, во сколько обходится производство одного дополнительного изделия в данной ситуации. Нетрудно заметить, что маргинальные издержки возрастают по мере роста производства, что хорошо согласуется с положением, высказанным в начале этого параграфа. При рассмотрении таблицы следует обратить внимание на то, что оптимальные объемы находятся точно на пересечении строки (маргинальные издержки – МС) и столбца (цена – Р) с равными их значениями, что совершенно аккуратно соотносится с правилом оптимальности, установленным выше. Проведенный выше анализ относится к обстановке совершенной конкуренции, когда производитель не может повлиять своими действиями на систему цен, и поэтому цена Р на товар У выступает в модели производителя как экзогенная величина.
Таблица 6.1
|