Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос. Стоимость собственного капитала





С позиции расчёта стоимости собственного капитала целесообразно выделять три его основных источника: долевой капитал в виде привилегированных акций, долевой капитал в виде обыкновенных акций, реинвестированную прибыль. Причина подразделения уставного капитала на два элемента состоит в том, что привилегированные акции рассматриваются как гибрид, сочетающий в себе свойства обыкновенных акций и заёмного капитала (как и по обыкновенным акциям сумма, уплаченная за них не подлежит возврату, как это происходит в случае с облигациями, вместе с тем по привилегированным акциям, как и по облигациям, обычно всегда выплачивается фиксированный процент от номинала).

Тем не менее принципиальных различий в оценке стоимости капитала в виде привилегированных акций и в виде обыкновенных акций нет. Акционеры в обмен на предоставление средств коммерческой организации рассчитывают на получение доходов, в общем случае состоящем из двух частей: дивидендов и доходов от капитализации. Их доход численно будет равен затратам организации по обеспечению данного источника средств. Поэтому, с позиции коммерческой организации, стоимость такого источника приблизительно равна уровню дивидендов, выплачиваемых акционерам.

Стоимость капитала в видепривилегированных акций. Ряд фирм используют в составе своей целевой структуры капитала привилегированные акции. Дивиденды по привилегированным акциям не вычитаются из налогооблагаемой прибыли компании, и, следовательно, их полная сумма ложится бременем на бюджет фирмы. Соответственно для определения стоимости привилегированного собственного капитала используется его дивидендная доходность без каких-либо корректировок, связанных с налогообложением. Также немаловажно и то, что большинство привилегированных акций выпускается без определения даты их погашения, подобной дате погашения облигаций, но выпуски привилегированных акций в последнее время обычно производятся с условием формирования фирмой специального фонда погашения (фонд, предназначенный для финансирования периодического выкупа фирмой части обращающихся на рынке привилегированных акций с их последующим погашением), что на практике равносильно ограничению срока их обращения на рынке. Наконец, хотя дивиденды по привилегированным акциям по закону могут и не выплачиваться, фирмы часто рассматривают их выплату как безусловную неизбежность, потому, что в противном случае: 1) они не смогут выплачивать дивиденды по обыкновенным акциям; 2) вполне вероятно, что у них возникнут сложности с привлечением дополнительного финансирования с рынка капитала; 3) в некоторых случаях владельцы привилегированных акций даже смогут захватить контроль над фирмой, поскольку часто законодательство предоставляет последним равное с обычными акционерами право голосования на собраниях акционеров на период, пока дивиденды по привилегированным акциям не выплачиваются или выплачиваются в неполном объёме.

Как уже было сказано, стоимость капитала привилегированных акций kps равняется дивидендной доходности этих акций:

kps = Dps / P m, (13)

где Dps – величина ближайшего дивиденда на привилегированную акцию; P m – текущая рыночная цена акции за вычетом предельных эмиссионных затрат фирмы на выпуск одной новой акции на рынок.

Стоимость долевого капитала в виде обыкновенных акций – ks. Размер дивидендов по обыкновенным акциям заранее не определён и зависит от эффективности работы коммерческой организации. Поэтому стоимость данного источника средств можно рассчитать с гораздо большей условностью.

Для того чтобы дать осмысленную оценку стоимости акционерного капитала обычно применяются три метода:

1) модель ценообразования на капитальные активы (Capital Assets Pricing Model, CAPM);

2) метод дисконтирования денежных потоков (Discounted Сash Flow, DCF);

3) метод сложения доходности облигаций и премии за риск (Bond-Yield Plus Risk Premium Method).

Эти методы не являются взаимоисключающими – ни один из них не имеет неоспоримых преимуществ над другими, и все могут дать ошибочные результаты при практическом использовании. Следовательно, при решении оценки стоимости обыкновенных акций компании, обычно используют все три метода, а затем либо выбирают один из них на основании экспертного заключения, либо просто усредняют полученные результаты.

Для того чтобы применять данные методы необходимо иметь представление о таких понятиях, как риск, соотношение риска и доходности, коэффициент риска β, премия за риск, безрисковая ставка доходности и др.

Риск и доходность. Инвесторам нравится получать доход и не нравится принимать на себя риск. Следовательно люди будут вкладывать деньги в рискованные активы, только если они предполагают получать с этого большие доходы. Поэтому, как правило, чем выше риск, тем выше ожидаемая доходность активов. Хотя, как будет показано ниже, и при одинаковой доходности мера риска может быть разной.

Американские исследователи Р.Ибботсон и Р.Синкефилд (R.Ibbotson, R.Sinquefield), проанализировав данные по обычным акциям американских корпораций за период с 1926 г. по 1999 г. обнаружили, что средняя (ожидаемая) доходность акций на рынке (ŘM) за это время составила 13,3 %, в то время как доходность по безрисковым ценным бумагам (RF) на американском рынке за этот же период составила 3,8%. Разницу между этими показателями принято называть премией за риск (RPM, risk premium):

RPM = ŘM – RF = 13,3 – 3,8 = 9,5% (14)

ŘM= RF + RPM (15)

Безрисковая ставка доходности (RF), как правило, определяется по доходности государственных ценных бумаг. В Америке это так называемые ценные бумаги (облигации) Казначейства США с различными сроками погашения (Treasury Bills, Treasury Notes, Treasury Bonds, and Treasury Inflation-Protected Securities or T-Bills, T-Notes, T-Bonds, and TIPS), ставки по которым колеблются в пределах 4-6%. Строго говоря, такие бумаги так же обладают некоторым риском, но вероятность банкротства развитых государств настолько мала, что ею принято пренебрегать. Но хотя ценные бумаги Казначейства в значительной степени и свободны от риска неплатежа, облигации Казначейства, например, подвержены риску процентных ставок, а краткосрочные казначейские векселя – риску ставки рефинансирования. Недавнее исследование показало, что примерно две трети американских фирм ориентируются на ставку долгосрочных облигаций Казначейства (T-Bonds).

Что же такое риск? Универсального и общепринятого определения этого понятия нет. В толковом словаре Webster’s риск определяется как «опасность; подверженность потере или ущербу». Таким образом, риск определяет вероятность того, что произойдёт некое неблагоприятное событие. Например, вкладывая деньги в активы вновь образованной нефтяной компании инвестор должен учитывать, что средняя норма прибыли в этой отрасли (в США) 20%, а фактическая доходность может быть от +1000% до – 100%. Поскольку существует значительный разброс в возможном доходе, фактическая доходность может оказаться далеко от ожидаемой (или среднеотраслевой), причём как в положительную, так и в отрицательную сторону. Для определения риска используются методы статистики/теории вероятности.

Риск, связанный с активом, можно проанализировать двумя способами: 1) как автономный риск, когда актив рассматривается изолировано; 2) как риск актива – части портфеля акций.

Таким образом, автономный риск – это риск, с которым инвестор столкнётся, если будет держать только один актив. На самом деле активы почти никогда не держатся инвесторами по отдельности – они объединяются в портфели, но для того, чтобы понимать портфельный риск (portfolio risk), необходимо уметь рассчитывать и автономные риски для всех активов.

При вложении в акции, риск акции означает, что имеется вероятность того, что фирма не будет работать настолько эффективно, чтобы окупить вложения – чем выше вероятность падения её прибыли, тем выше должна быть ожидаемая доходность акции, чтобы вложения окупились. Величина дохода зависит от многих причин. Вероятность получения определённого дохода по акциям можно определять, например, спросом (высокий, средний, ограниченный), назначая каждому виду спроса свой весовой коэффициент. Ожидаемую доходность актива k можно представить как средневзвешенное от возможных величин доходности в зависимости от спроса

k = P1k1 + P2k2 + … + Pnkn = ∑Piki, при (i = 1 ÷ n), (16)

где ki – это один из возможных исходов доходности акций; P i – вероятность этого исхода.

В таблице (матрице выигрышей) представлен расчёт доходности двух компаний, данные таблицы отображены также на двух графиках. Данное частотное распределение можно представить с помощью графика нормального распределения, кривые Гаусса для акций каждой из компании представлены на графике.

По осям нормального распределения, как известно, откладываются плотность распределения вероятности (ось Y) и среднеквадратическое отклонение (ось X). Таким образом, мерой сжатости распределения, или мерой риска акции, будет среднеквадратическое (стандартное) отклонение σ (случайной) величины прибыли от её математического ожидания (доходности на акции). Чем меньше СКО, тем более распределение вероятности «сжато» и, соответственно, тем ниже риск акции. Как известно, СКО определяется по формуле:

σ = √D(k) = √ ∑(k iK)2 • pi , при (i = 1 ÷ n), (17)

где ki – отдельное значение доходности; K – среднее значение доходности; (kiK)2 - квадратическое отклонение доходности от среднего; pi – вероятность отклонения доходности.

Рассчитаем значение СКО по этой формуле для нашего примера. СКО акций компании А составляет 65,84%, для компании В СКО акций равняется 3,87%. Следовательно, вложение в компанию А является более рискованным. Если распределение вероятностей нормальное, или гауссовское, то в 68,26% случаев (с вероятностью 68,26%) фактическая доходность по акциям этих компаний окажется в пределах интервала ± 1 их СКО от среднего значения доходности (т.е., например, для компании В в диапазоне 15% ± 3,87%, или от 11,13% до 18,87%), с вероятностью 95,46% - в интервале 2σ, с вероятностью 99,74% - в интервале 3σ.

Для фирм, представленных на Нью-Йоркской фондовой бирже, среднее значение σ в течение нескольких последних лет колебалось в пределах от 35 до 40%.

Портфельный риск. Для определения элементов, входящих в алгоритмы расчёта стоимости акционерного капитала необходимо рассмотреть ещё один вид риска и элементы его характеризующие.

Для портфельного инвестора, менеджера событие, связанное с тем, что отдельные акции падают или поднимаются в цене, не имеют принципиального значения – для него важны только доходность и риск его портфеля акций в целом. Соответственно он рассматривает доходность и риск отдельных бумаг с точки зрения того, как они влияют на риск и доход портфеля, в состав которого входят. Средняя (ожидаемая) доходность портфеля ценных бумаг kp – это просто средневзвешенное значение ожидаемых доходностей отдельных активов, входящих в портфель, при этом их веса – это доли общей суммы инвестиций в портфель (часть всего портфеля) вложенные в соответствующие активы:

kp = k1w1 + k2w2 + … + knwn = ∑kiwi , при i = 1 ÷ n, (18)

где ki – ожидаемая доходность отдельных активов; wi – доля этих активов в портфеле из n акций.

Колебания доходности отдельных акций, из-за которых фактическая доходность портфеля может отличаться от ожидаемой, могут компенсировать друг друга, и поэтому доходность портфеля ценных бумаг обычно гораздо меньше отличается от ожидаемой, чем доходность отдельных акций. Следовательно диверсификация снижает риск капиталовложений. В отличие от доходов риск портфеля ценных бумаг σp обычно не является средневзвешенным значением средних отклонений отдельных активов, из которых состоит портфель; риск портфеля будет ниже, чем средневзвешенное значение σi отдельных активов. Риск портфеля определяется корреляцией активов, входящих в него. В простейшем случае, для портфеля из акций двух компаний А и В, корреляционный момент KAB, или ковариацию Cov(A,B), можно определить следующим образом:

KAB = Cov(A,B) = M[(kAKA)(kBKB)] = ∑∑(kAKA)(kBKB)•pij, при i=1÷n, j=1÷m (19)

где kA, kB – отдельные значения доходности акций А и В соответственно; KA, KB – среднее значение доходностей по акциям А и В, М – математическое ожидание.

Коэффициент корреляции для акций А и В рассчитывается по формуле:

rAB= KAB / σAσB (20)

Дисперсия портфеля из акций двух компаний:

D(А,В) = σA2 wA2 + 2Cov(A,B) wAwB + σB2wB2, (21)

где σA σB – СКО акций А и В; wA, wB– доля акций каждой из компаний в портфеле.

СКО портфеля для акций А и В рассчитывается по формуле:

σp = √D(A,B) (22)

При включении в портфель большего количества акций, вычисляется матрица значений слагаемых формулы расчёта дисперсии портфеля акций, каждое слагаемое представляет собой произведение ковариации между двумя соответствующими акциями (например, Cov(1,2)) на их весовые коэффициенты/доли в портфеле (например, w1, w2) - Cov(i,j) wiwj. По диагонали элементы матрицы равны значению D(i)wi2, при i,j = 1 ÷ n, где n число типов акций в портфеле.

Если бы удалось найти акции с отрицательной корреляцией, то удалось бы защитить портфель от риска неполучения дохода. В действительности же большинство акций положительно коррелированны. В среднем коэффициент корреляции доходности двух случайно выбранных акций NYSE составляет около +0,6, и для большинства пар акций значение коэффициента корреляции будет лежать в пределах от +0,5 до +0,7. Большинство акций имеют тенденцию приносить высокие прибыли, когда экономика находится на подъёме, и низкие, когда экономика испытывает спад. Таким образом, даже диверсифицированные портфели ценных бумаг сохраняют значительную степень риска, хотя и меньшую, чем акции какой-нибудь одной фирмы.

На схеме показано, как на риск портфеля влияет включение в него дополнительных случайным образом выбранных акций Нью-Йоркской фондовой биржи (от 1 до 2000 и более акций). Этот график показывает, что в общем случае рискованность портфеля снижается по мере увеличения размеров портфеля, приближаясь к определённому пределу. Согласно данным, накопленным за последние годы, СКО портфеля, содержащего один тип акций, σ1, составляет примерно 35%. Портфель, состоящий из всех акций, который называется рыночным портфелем, будет иметь СКО σM равное приблизительно 20,1%. Таким образом, почти половина риска, присущего отдельным акциям, может быть устранена, если акции входят в состав достаточно диверсифицированного портфеля, т.е. портфеля, содержащего акции 40 или более компаний, работающих в различных отраслях.

Часть риска акций, который можно устранить, называется диверсифицируемым (индивидуальным, несистематическим) риском, а часть риска, которая не поддаётся устранению, называется рыночным (систематическим, портфельным) риском.

Диверсифицируемый риск вызывается такими непредвиденными событиями, как судебные иски к компаниям, забастовки, успешные и провальные маркетинговые программы, заключение или разрыв важных контрактов, а также другие события, которые индивидуальны для каждой отдельной фирмы. Поскольку эти события носят случайный характер, их влияние на портфель ценных бумаг может быть устранено с помощью диверсификации – негативные явления в одной фирме могут быть компенсированы позитивными в другой. Рыночный риск вызывается факторами, которые систематически влияют на большинство фирм: войны, инфляция, экономический спад, высокие процентные ставки и т.д. Поскольку на большинство акций все эти факторы влияют отрицательно, рыночный риск невозможно устранить с помощью диверсификации.

При включении акций в портфель ценных бумаг, их релевантный риск, т.е. вклад в риск портфеля, будет значительно ниже, чем их автономный риск. Пояснение релевантного риска: Предположим вам предложили подбросит монету один раз. Если выпадет орёл, вы выиграете $20 тысяч, если решка – потеряете $16 тысяч. Это хорошее пари – ваш доход в среднем будет равен 0,5•20000 + 0,5•(–16000) = $2000. Однако такое предложение достаточно рискованное, поскольку у вас есть 50% шансов на то, что вы потеряете $16000. Если же вам предложат подбросить монетку 100 раз, и каждый раз, когда будет выпадать орёл, ваш выигрыш будет составлять $200, а когда решка – вы будете терять $160, то шансы достаточно велики на то, что орлы и решки будут выпадать в половине случаев и вы выиграете в среднем 50•200 +50•(–160) = $2000, как и прежде. Хотя ставка на каждую подброшенную монетку рискованна, игра в целом приобретает более низкий риск, поскольку часть риска оказывается устранена за счёт диверсификации.

Мерой релевантного риска отдельных акций, т.е. риска, который эти акции привносят в хорошо диверсифицированный портфель ценных бумаг, является так называемый бета-коэффициент β;. Коэффициент β – характеризует риск, обусловленный корреляцией ценной бумаги и рынка и служит количественным измерителем систематического риска, не поддающегося диверсификации. Коэффициент бета можно вычислить по следующей формуле:

β = (σi / σM) riМ, (23)

где σi – СКО доходности акции; σM – СКО доходности рынка; riМ – коэффициент корреляции между доходностью i-той акции и доходностью рынка в целом.

Коэффициент бета можно вычислить с помощью графических построений. Отложим по оси X графика доходность рынка в целом, а по оси Y – доходность отдельных акций. Тогда бета-коэффициент будет показывать силу тенденции к движению акции вверх и вниз вместе с рыночным портфелем.

Рыночный риск акций (портфелей акций) измеряется с помощью их бета-коэффициентов, который является индексом относительной волатильности (неустойчивости) их доходности. При этом, если:

β < 1, то акции менее рискованы по сравнению с рынком в целом;

β = 1, то акции имеют среднерыночный риск;

Β >1, то акции более рискованы, чем в среднем на рынке.

Теоретически возможно, чтобы у акции был отрицательный бета-коэффициент, тем не менее на практике их не существует.

Бета-коэффициенты вычисляются и публикуются компаниями Merill Lynch, Value Line, Yahoo!Finance и множеством других организаций для тысяч компаний. Например, Value Line приводит данные по акциям 1700 компаний (и ни у одной из них нет отрицательного бета-коэффициента).

Модель ценообразования капитальных активов (Capital Assets Pricing Model, CAPM). В некоторых источниках (например, Р. Брейли, С. Майерс. Принципы корпоративных финансов. М., 2009) название данного метода переводится на русский язык как Метод оценки долгосрочных активов (МОДА).

Как указывалось ранее формулу для требуемой инвесторами доходности (Ř) любого вложения можно записать так:

Ř = RF + RP, (24)

где RF – безрисковая ставка; RP - премия за риск

Считается, что инвесторы питают неприязнь к излишнему на их взгляд риску (risk aversion), поэтому любая ценная бумага, отличная от безрисковых государственных облигаций или казначейских векселей, может рассчитывать на признание инвесторов только в том случае, если уровень ее ожидаемой доходности компенсирует присущий ей дополнительный риск.

Данная надбавка называется премией за риск (второе слагаемое в формуле), она напрямую зависит от величины β; -коэффициента данного актива, так как предназначена для компенсации только систематического риска

Несистематический риск может быть устранен самим инвестором путем диверсификации своего портфеля, поэтому рынок не считает нужным устанавливать вознаграждение за этот вид риска

Здесь безрисковая ставка доходности включает в себя премию за предполагаемую инфляцию, причём предполагается, что изучаются активы, имеющие одинаковые сроки погашения и ликвидность. В этих условиях соотношение между требуемой доходностью актива и риском можно графически представить линией рынка ценных бумаг (Security Market Line, SML). Требуемую доходность акции ks можно в этом случае выразить следующим образом:

ks = RF + βi • RP = RF + βi • (RM – RF), (25)

где RM – средняя рыночная доходность (движение рынка и его доходность измеряется соответствующими показателями для некоторых индексов, например, Dow Jones, S&P500, FTSE, NIKKEY, РТС, ММВБ и др.).

Линия SML может быть представлена в графической форме. Требуемые инвесторами доходы откладываются по вертикальной оси, в то время как риск, измеряемый с помощью бета-коэффициента откладывается по горизонтальной оси. Для безрисковых активов βF = 0. βM для всех акций рынка равен 1, т.к. βM = ∑xiβi, при (i = 1 ÷ n), где xi – пропорция акций определённого типа на рынке, βi – бета-коэффициент каждой пропорции акций.

Доходность безрисковых активов равна RF, а доходность рынка RM. По двум точкам (βF, RF) и (βM, RM) строится линия SML. По формуле или по графику можно определить требующуюся доходность акций компании. Так, для βs = 1,3 требуемая доходность акций будет равна ks (см. график, точка S). В точке T доходность акции меньше, чем должна быть для данной величины βs (доходность, которая должна быть находится на пересечении с прямой SML), считается, что в этом случае инвесторы заплатили за акции больше (акции переоценены), чем они стоят, поэтому цена за акцию начнёт снижаться (ks = D / Pm, где D – ожидаемый дивиденд, Pm – рыночная цена) пока премия за риск (и доходность ks) не будет соответствовать бета-коэффициенту этих акций. В точке D акции недооценены и их цена будет повышаться, до тех пор, пока доход по акции не будет соответствовать требуемому доходу для данного β-коэффициента.

Несмотря на условность базовых допущений, модель CAPM получила широкое распространение в финансовом менеджменте, а её автор У. Шарп в 1990 г.был удостоен Нобелевской премии в области экономики. Введённый им коэффициент β стал популярной характеристикой акций в развитых странах. Согласно CAPM активы с большими значениями рыночного риска βi должны иметь большие ожидаемые доходности. Поскольку собственный риск не связан с βi, его увеличение не ведёт к росту доходности. Инвесторы вознаграждаются за рыночный риск, но их собственный риск не компенсируется рынком (такой риск может быть диверсифицирован).

При использовании CAPM в России проблему представляет сложность определения безрисковой ставки RF. На практике в её качестве может использоваться доходность ГКО, ОФЗ, ОВВЗ или евробондов за рассматриваемый период. Подобные ставки публикуются рядом информационных агентств (Росбизнесконсалтинг, Финмаркет, AK&M и др.). Ещё одна проблема – определение и мониторинг индивидуальных бета-коэффициентов акций отечественных предприятий. В настоящее время некоторые информационные агентства осуществляют подобные расчёты (AK&M, например).

Метод дисконтирования денежных потоков. При использовании данного метода величину требуемой доходности находят из формулы текущей цены акций, которая имеет вид:

;

P0 = D1/(1+ ks)1 + D2/(1+ ks)2 + …= ∑[Dt/(1+ks)t]= D/ks (26)

t = 1

где P0 – текущая цена акций; Dt – дивиденды, получение которых ожидается до конца года t; ks - требуемая инвесторами доходность.

Если ожидается, что дивиденды будут расти с постоянной скоростью g, то данную формулу можно представить в виде формулы Гордона:

P0 = D1/(ks – g), тогда: (27)

ks = (D1/ P0) + g, (28)

где g – темп прироста дивидендов, g = ROE + RR, где ROE – ожидаемая в будущем рентабельность собственного капитала фирмы (Return on Equity), обычно принимается равной средней рентабельности акционерного капитала за последние годы, ROE = Pn/E, где Pn– чистая прибыль, т.е. прибыль доступная к распределению среди собственников; E– собственный капитал; RR – коэффициент реинвестирования прибыли (Retention Ratio), т.е. доля прибыли, которую фирма предполагает сохранить в своём распоряжении и реинвестировать, не распределяя среди акционеров RR = 1 – PR, где PR – коэффициент выплаты дивидендов (Payout Ratio), доля прибыли, направляемая на выплату дивидендов или выкуп собственных акций.

Метод сложения доходности облигаций и премии за риск. Некоторые аналитики используют следующую процедуру для оценки стоимости капитала фирмы: они просто прибавляют собственную весьма субъективную оценку премии за риск в размере от 3 до 5% к доходности долгосрочных долговых обязательств фирмы. Логика таких действий основана на том, что фирмы с рискованным, а значит, с дорогим для фирмы долгом также будут иметь рискованный капитал, также имеющий высокую стоимость.

ks = kd + RP, (29)

где kd - доходности долгосрочных долговых обязательств фирмы; RP – премия за риск.

Практика подтверждает это:

Компания BellSouth: облигации – 8%, стоимость собственного капитала – 12% (Премия за риск 4%)

Компания NCC: облигации – 10,4%, стоимость собственного капитала – 14,4% (Премия за риск 4%)

Используя данный метод трудно определить стоимость капитала точно, но он может дать верный порядок оценки.

Стоимость долевого капитала в виде обыкновенных акций новой эмиссии. В отношении обыкновенных акций определение стоимости капитала имеет особо важное значение, когда планируется выпуск новых акций. Это делается в основном в двух случаях:

а) компания успешно развивается и ей не хватает реинвестируемой прибыли для обеспечения и расширения имеющихся инвестиционных программ, а также для участи в новых программах;

б) компании нужны средства для покрытия некоторых неотложных расходов стратегического характера и появление иных источников не предвидится.

Первая ситуация соответствует нормальному развитию событий и характерна для компаний, находящихся в стадии роста. Вторая ситуация вряд ли может трактоваться как нормальная, поскольку чаще всего новая эмиссия делается вынужденно.

В любом случае при оценке стоимости этого источника используется модификация модели Гордона, учитывающая затраты на размещение акций:

ksn = [D1/(P0 - rfc)] + g, (30)

где rfc – уровень затрат на размещение акций (выражается десятичной дробью).

Стоимость источника «Реинвестированная прибыль». Реинвестированная прибыль чаще всего является основным спонтанным источником пополнения средств компании. Основные причины этого: 1) эти средства мобилизуются максимально быстро и не требуют специального механизма, как в случае с эмиссией акций и облигаций; хотя тезис о быстроте мобилизации не следует понимать буквально, т.к. реинвестирование прибыли по сути означает плавное наращивание оборотных средств фирмы (обычно материальных активов и средств в расчётах); если нужны деньги на новый проект, их постепенно аккумулируют на счетах фирмы; 2) этот источник обходится дешевле других, поскольку не возникает эмиссионных расходов; 3) он безопасен в смысле отсутствия так называемого сигнального эффекта (падение курса акций компании после объявления о планируемой новой эмиссии из-за опасений инвесторов).

Стоимость этого источника может рассчитываться разными методами, а её величина легко интерпретируется следующим образом. Полученная компанией прибыль подлежит распределению среди владельцев обыкновенных акций. Для того, чтобы последние не возражали против реинвестирования прибыли, необходимо, чтобы ожидаемая отдача от такого реинвестирования была не меньше, чем отдача от альтернативных инвестиций той же степени риска. В противном случае владельцы обыкновенных акций предпочтут получить дивиденды и использовать эти средства на рынке капитала. В некотором смысле реинвестирование прибыли равносильно приобретению ими новых акций фирмы, т.е. ценой реинвестированной прибыли выступает планируемая к распределению сумма чистой прибыли предстоящего периода на эту часть инвестируемого капитала. Таким образом, стоимость этого источника krp приблизительно равна стоимости долевого капитала в виде обыкновенных акций:

krp = ks

Подводя итог, следует отметить, что каждый источник имеет свою стоимость, и хотя невозможно дать точные соотношения между значениями стоимости источников, но с определённой долей условности имеет место следующая цепочка неравенств:

kbc < kd < kps < ks < krp < ksn < kcs

Безусловно, она в полной мере верна лишь теоретически, поскольку в реальной жизни возможны любые отклонения, обусловленные как внешней конъюнктурой, так и эффективностью деятельности самой компании; тем не менее, она полезна для понимания логики и последовательности процедур по привлечению источников финансирования.

 

4 вопрос. Средневзвешенная стоимость капитала

Средневзвешенная стоимость капитала (Weighted Average Cost of Capital, WACC) – это показатель, характеризующий относительный уровень общей суммы регулярных расходов на поддержание сложившейся (оптимальной, целевой и др.) структуры капитала, авансированного в деятельность компании, в процентах к общему объёму привлечённых средств и выраженный в терминах годовой процентной ставки. Этот показатель отражает сложившийся на предприятии необходимый минимум возврата на вложенный в его деятельность капитал, его минимальную рентабельность.

С тем, чтобы способствовать решению своей главной задачи – увеличению стоимости фирмы, – менеджмент должен определять оптимальную структуру капитала, которая в максимальной степени будет способствовать решению этой задачи. Следовательно, фирма, заботящаяся о своей стоимости, должна определить свою целевую структуру капитала и затем привлекать его с таким расчётом, чтобы фактическая структура капитала стремилась к целевой. Оптимальная (целевая) структура капитала определяется долей (весом) каждого компонента в капитале фирмы (порядок определения оптимальной структуры капитала будет рассматриваться в следующей лекции). Эти веса используются при расчёте средневзвешенной стоимости капитала по следующей общей формуле:

WACC = ∑kiwi , при (i = 1 ÷ n), (31)

где ki – стоимость i-го компонента капитала (источника средств); wi – удельный вес (доля) компонента капитала (источника средств) в общей сумме капитала фирмы.

Если, например, капитал фирмы формируется за счёт заёмного капитала, привилегированных акций и обыкновенных акций, то формула примет вид:

WACC = kd(1 - T)wd + kpswps + ksws, (32)

где kd, kps, ks – соответственно стоимость заёмных средств, привилегированных акций и обыкновенных акций; wd, wps, ws – соответственно доли заёмных средств, привилегированных акций и обыкновенных акций; T – предельная налоговая ставка (величина kd (1 - T) это стоимость долговых обязательств фирмы после налогообложения).

Пример. Предположим, что у компании N сформировалась целевая структура капитала, состоящая на 30% из заёмного капитала, на 10% из привилегированных и на 60% из обыкновенных акций. Стоимость её долговых обязательств до налогообложения kd составляет 11%; предельная налоговая ставка T равна 40%; стоимость её долговых обязательств после налогообложения kd (1 – T) составляет 11(1-0,4) = 6,6%, стоимость привилегированного капитала фирмы равна 10,3%, а стоимость её обыкновенного собственного капитала – 14,5%. Предполагается, что весь новый обыкновенный капитал будет формироваться за счёт нераспределённой прибыли. В этом случае средневзвешенная стоимость капитала компании N будет определяться следующим образом:

WACC = kd (1 - T)wd + kpswps + ksws, = 11,0 • (1- 0,4) • 0,3 + 0,1 • 10,3 +0,6 • 14,5 = 11,7%

Формально можно обособлять разные источники финансирования, оценивать их стоимость и рассчитывать значение WACC. Однако на практике чаще всего ограничиваются двумя обобщёнными источниками – это собственный и заёмный капитал.

Необходимо отметить два момента. Во-первых, WACC – это средневзвешенная стоимость каждого вновь привлекаемого, или предельного (marginal), доллара капитала, и она может отличаться от средней стоимости уже привлечённого в прошлом капитала фирмы. В финансовом менеджменте, как уже отмечалось, нас прежде всего интересует использование капитала для капитального бюджетирования и финансирования новых проектов фирмы, а для этой цели необходимо знать именно стоимость предельного капитала фирмы.

При осуществлении капитального бюджетирования, т.е. при составлении бюджета капиталовложений, WACC используется как коэффициент дисконтирования. При рассмотрении новых инвестиционных проектов именно с WACC сравнивают значение IRR инвестиционного проекта. Кроме этого, WACC используется для оценки ориентировочной рыночной стоимости фирмы.

В теории финансового менеджмента показывается, что стоимость корпорации равна приведённой стоимости будущих денежных потоков при ставке дисконтирования, равной WACC:

VF = ∑ [FCF/(1 + WACC)t], (33)

t = 1

где FCF – денежные потоки, порождаемые операциями компании; t – число периодов.

Эту формулу можно переписать в терминах рентабельности инвестированного капитала:

VF = CF + [CF•(EROIC – WACC)]/(WACC – g), (34)

где CF – величина совокупного капитала, имеющегося у фирмы; EROIC – ожидаемая рентабельность инвестированного капитала (Expected Return on Invested Capital), равняется отношению чистой прибыли + проценты к уплате к сумме совокупного капитала, инвестированного в деятельность фирмы; g– темп роста фирмы (дивидендов).

Второе слагаемое формулы (34), представляющее собой рыночную добавленную стоимость, показывает, что стоимость фирмы зависит от разницы между ожидаемой величиной рентабельности инвестированного капитала EROIC и средневзвешенной стоимостью капитала WACC. Если EROIC > WACC, то менеджмент увеличивает стоимость фирмы. В этом случае увеличение темпов роста фирмы только ускоряет её наращивание. Если же EROIC < WACC, то менеджмент разрушает стоимость фирмы и чем выше темп её роста, тем быстрее. В этом случае рост фирмы приносит только вред. Эти выводы применимы к любым фирмам, но саму формулу можно использовать только для анализа относительно устойчивых компаний, темп роста которых установился на определённом уровне, близком к постоянному.

Во-вторых, расчёт процентных долей (весов) каждой из составляющих капитала может быть основан на: 1) учётных, бухгалтерских показателях, взятых из баланса фирмы; 2) текущей рыночной стоимости соответствующих пассивов фирмы; 3) целевой структуре капитала, которая предположительно является оптимальной для фирмы структурой. Результаты недавно проведённых обзоров показывают, что большинство фирм основывают свои расчёты именно на показателях целевой структуры капитала и что последняя хорошо отражает фактическое соотношение рыночной стоимости различных пассивов фирмы. Верные веса – это веса, основанные на целевой структуре капитала фирмы, поскольку они являются лучшей оценкой того, как фирма предполагает привлекать капитал в будущем.

Нью-Йоркская консалтинговая фирма Stern Stewart&Co регулярно оценивает экономическую добавленную стоимость для крупных корпораций США. Чтобы получить эти оценки, компания, в частности вычисляет WACC каждой из этих компаний. В приведённой ниже таблице представлены её оценки WACC для некоторых корпораций, а также их доли долгосрочной задолженности







Дата добавления: 2015-04-16; просмотров: 924. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия