Компьютерный инженерный анализ в машиностроении
После того как в результате проектирования получены объемные модели изделий, появляется возможность дополнить данные о геометрии некоторыми физико-механическими свойствами и попытаться исследовать модель изделия, подвергнув некоторым важнейшим тестам прямо на компьютере, не прибегая к дорогостоящему опытному изготовлению. Такая возможность позволяет сэкономить значительные средства за счет того, что на компьютере можно испытать гораздо больше вариантов проекта изделия, чем это было бы в рамках натурного теста. Для инженера технолога CAE-системы могут быть полезны при решении задач проектирования технологической оснастки и исследовании новых технологических процессов. Состав различных видов анализа в различных CAE-системах разнообразен [6, 18]. В частности, решаются следующие задачи: кинематический анализ, анализ напряженно-деформированного состояния, анализ тепловых процессов, анализ поведения изделия при столкновениях и ударах, определение условий потери устойчивости конструкции, расчет характеристик усталостных разрушений, анализ процессов колебаний и др. Большинство CAE-программ включают собственные средства построения геометрической модели изделия, а также снабжены стандартными форматами обмена графической информацией с пакетами конструирования, т.е. предварительная геометрическая модель может быть создана в CAD-системе. Различные виды анализа, выполняемые в программных системах, основаны на классических инженерных подходах к разработке математических моделей поведения изделия при различных воздействиях. Обычно исходная задача анализа формулируется в дифференциальных уравнениях с частными производными совместно с начальными и граничными условиями. По используемому математическому аппарату методы решения задач в частных производных делят на две группы: аналитические и численные. В том редком случае, когда решение задачи может быть представлено в виде формулы, которая позволяет по заданному значению аргумента получить значение искомой функции, говорят, что решение получено в аналитической форме. Общий недостаток аналитических методов состоит в том, что область их применения обычно ограничивается простыми геометрическими конфигурациями, несложными граничными условиями и линейной постановкой задачи. Аналитические решения получают путем подстановок, функциональных преобразований, строго обосновывая некоторое количество принятых допущений. В отличие от аналитических, в численных методах решения дифференциальных уравнений в частных производных в качестве неизвестных используются значения зависимой переменной (тем-пературы, перемещения, потенциала) в некотором конечном числе точек исходной области (в узлах расчетной сетки). Производится дискретизация дифференциальных уравнений с использованием численных методов. В результате специальных преобразований система уравнений в частных производных заменяется системой линейных алгебраических уравнений для неизвестных значений в узлах сетки. Алгоритмы решения таких систем на ЭВМ хорошо разработаны. Наиболее распространенный численный метод в САПР – это метод конечных элементов (finite element method) – МКЭ. МКЭ предполагает предварительное разбиение исследуемой геометрической области на отдельные подобласти простой формы, связанные между собой конечным числом узлов – конечные элементы. Геометрическая модель превращается в сеточную (рисунок 4). В различных программах имеются специальные средства генерации конечно-элементных сеток с учетом кривизны поверхностей и других особенностей геометрии изделия. Различными бывают и типы конечных элементов: треугольники, четырехугольники, тетраэдры, призмы и др.
Рисунок 4 – Примеры конечно-элементных сеток
Кроме геометрических характеристик конечных элементов, содержанием базы данных расчета становятся свойства материала, граничные (пространственные) и начальные (временные) условия. Для описания свойств материала изделия используются параметры, необходимые для выполнения требуемого вида анализа. Так, в прочностном анализе учитываются модуль упругости (модуль Юнга), коэффициент Пуассона, плотность, коэффициент трения, модуль сдвига, коэффициент теплового расширения, коэффициент внутреннего трения. В качестве граничных условий – заданные значения действующих сил, моментов и узловых перемещений. Для проведения теплового анализа задают удельную теплоемкость, коэффициент теплопроводности, коэффициент конвективной теплоотдачи, температуру окружающей среды, граничные значения или законы изменения температур и тепловых потоков. В CAE-системах существуют следующие возможности представления результатов решения задачи: · визуализация линий или поверхностей уровня, например, с равными температурами или напряжениями; · анимация нестационарного процесса; · листинг результатов в виде таблицы значений искомых переменных в заданных узлах. Часто возможна оценка погрешностей результатов анализа. Рисунок 5 иллюстрирует порядок проведения прочностного анализа детали.
а б в Рисунок 5 - Расчет напряженно-деформированного состояния:
Большинство систем конечно-элементного анализа обладают внутренними средствами, позволяющими создать практически любую нужную для анализа геометрию. Однако все развитые CAE-системы могут также импортировать геометрические данные либо через промежуточные файлы стандартных форматов (типа SAT, IGES, STEP, DXF), либо непосредственно из конкретных CAD. Однако исполь-зование геометрических моделей, подготовленных в CAD, часто затруднено с точки зрения конечно-элементного моделирования (слишком сложная сетка и др.).
|