Физическая задача
Камень бросили вертикально вверх с начальной скоростью 10 м/с. Через сколько времени он поднимется на высоту, равную 5,0 м? В этих условиях сопротивлением воздуха будем пренебрегать,и ускорение свободного падения считать постоянным. Переход к математической модели задачи осуществляется так же, как и при решении любой текстовой задачи на составление уравнений, при этом каждый пользуется знаниями, полученными и по физике и по математике. Итак, введём направленную вертикально вверх координатную ось у, начало которой совместим с камнем, моделируемым материальной точкой. При сделанных предположениях движение камня вдоль оси у будет определяться постоянным ускорением свободного падения g (м/с2) и начальной скоростью v0 (м/с). В этих условиях, как известно из курса физики, характер движения камня описывается функцией Теперь для решения сформулированной задачи обозначим через t с ‒ время, через которое камень окажется на высоте 5,0 м, тогда для определения t получим на основании (10.1) уравнение y(t) = 5,0 или =5,0, т.е., , (1) которое и является математической моделью рассматриваемой конкретной физической задачи. Этим завершается первый этап решения прикладной задачи средствами математики. На втором этапе решаем уже математическую задачу, т.е. квадратное уравнение (1), в котором t ‒ неизвестное. Сначала найдём дискриминант D=0. Однако это равенство приближённое, о чём свидетельствует значение коэффициента 5,0 в уравнении (1). Формально уравнение (1) имеет единственное решение t =1,0. Но здесь есть одно осложнение: малые погрешности в исходных данных могут существенно изменить решение и тогда оно оказывается недостоверным: при D < 0 его нет, а при D > 0 их два. Решение t = 1,0 ‒ неустойчиво. Здесь можно говорить об условной устойчивости, когда при малых погрешностях в исходных данных малым будет D > 0. Неочевидные лишние данные задачи часто могут быть обнаружены с помощью ЭВМ, в особенности, если решение можно свести к перебору всех возможных вариантов, удовлетворяющих заданным условием. Для этого сначала составляет и реализуется на ЭВМ программа, использующая все исходные данные. Затем реализуется только части программы соответствующей задачи, из условия которой исключается те или иные сведения. Если при каком-то варианте исключения данных из непротиворечивой задачи получается тот же результат, что и при всей исходной информации, то такие данные без ущерба для дела можно отбросить и таким образом придать задаче более совершенную формулировку. Таким образом, используя ЭВМ, можно обнаружить в задачах лишние данные, если они имеются, и, исключив из, совершенствовать формулировки задач. Постановка задачи по-новому часто проливает свет на её подлинное содержание и указывает прямой путь к выбору прямых решений. Если решение некоторой задачи сводится даже к системе линейных алгебраических уравнение, то известная теория построена в предположении, что все коэффициенты, включая и правые части, заданы точно. Такое предположение естественно для классической математики, когда система моделирует связи между реальными величинами, то её коэффициенты имеют конкретный смысл. Они часто получаются в результате измерений (прямых или косвенных) и поэтому известны приближенно. Но тогда приходится решать систему, в которой известные величины заданы приближенно. Не так уж и редко в таких случаях малые погрешности в исходных данных вызывают достаточно большие погрешности в решениях, которые таким образом оказываются практически непригодными, неустойчивыми, а соответствующие им задачи плохо обусловленными. Конечно, при рассмотрении прикладных задач важно знать, какое решение найдено: неустойчивое или устойчивое, добротное, которое может быть использовано на практике. Ответ на этот вопрос можно получить на основе применения ЭВМ.
1) 2. МАТЕМАТИЧЕСКИЕ МОДЕЛИ ОСНОВНЫХ ЛОГИЧЕСКИХ СВЯЗОК Логические связки служат для образования сложных высказываний из простых. Понятие «высказывание» в логике является первичным, оно не определяется, а поясняется. Под высказыванием понимается повествовательное предложение, о котором можно сказать, разумно считать, что оно либо истинно, либо ложно. Какие-либо другие смысловые характеристики высказываний игнорируются. Высказывания будем обозначать большими латинскими буквами А, В, С … Например, А {2 – четное число}, {6 – нечетное число}, {пять больше семи}, {Земля – планета солнечной системы}, {Луна – искусственный спутник Земли}. Сразу видно, какие из приведенных высказываний являются истинными (И) и, какие – ложными (Л). Будем также обозначать истинное высказывание 1, ложное 0, тогда каждое высказывание будет характеризоваться цифрами 1 и 0, которые являются мерами истинности высказывания. Если имеется несколько высказываний, то из них с помощью логических связок и отрицаний можно построить новые высказывания.
|