Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классификация моделей





Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие — как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф — это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.


1) 1. КОНЕЧНЫЕ УРАВНЕНИЯ КАК МАТЕМАТИЧЕСКИЕ МОДЕЛИ. ОСНОВНЫЕ МЕТОДЫ ИХ РЕШЕНИЯ И РЕАЛИЗАЦИЯ НА ЭВМ.

Уравнение, которое приводится к виду , где ‒ функция, называется конечным (в отличие, например, дифференциального или интегрального уравнения). Функция, находящаяся в левой части конечного уравнения может зависеть и от многих переменных.

Такие уравнения или их системы часто представляют математические модели или их компоненты при решениях прикладных задач, то есть таких, условия которых содержат нематематические понятия.

Химическая задача

Сколько атомов в молекуле серы при 1160°С, если плотность паров серы по воздуху при этой температуре равна 2,2?

Это прикладная задача: её условие содержит такие нематемати­ческие понятия как молекула, атомы, плотность паров и т. п.

Так как относительная молекулярная масса воздуха равна 29, то относительная молекулярная масса серы, соответствующая условию задачи, будет 29·2,2 = 63,8. Обозначив число атомов в молекуле серы через х, и, учитывая, что относительная атомная масса серы равна 32, для определения неизвестного, получим уравнение 32х= 63,8. Итак, составленное конечное (линейное) уравнение ‒ это математическая модель задачи. Решение этого уравне­ния должно принадлежать множеству натуральных чисел, поскольку количество атомов в молекуле ‒ число целое. Это замечание очень важное, так как все используемые количественные данные являются приближенными. Итак, ответ: х = 2, т. е. искомая молекула содержит 2 атома серы, S2 ‒ её молекулярная формула. Найденное решение является добротным, устойчивым по отноше­нию к ошибкам измерений плотности паров серы: небольшие по­грешности не влияют на результат!

Действительно, пусть плотность равна 2,1 или 2,3, тогда пра­вая часть уравнения соответственно будет 29·2,1 61 или 29·2,3 67, но поскольку индекс в формуле серы ‒ натуральное число, то, рассуждая, как и выше, получим тот же результат.







Дата добавления: 2015-04-16; просмотров: 462. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия