ПОДЦАРСТВО МНОГОКЛЕТОЧНЫЕ
Многоклеточные характеризуются тем, что тело их слагается из множества клеток и их производных. Однако этот признак сам по себе не определяет еще принадлежности к Metazoa. Из большого числа клеток могут слагаться, как мы видели выше (с. 42), колонии простейших, например Eudorina, Volvox и др. В теле Metazoa клетки всегда дифференцированы как построению, так и по функции в различных направлениях и, будучи лишь частями сложного организма, утратили свою самостоятельность.. Напротив, клетки, составляющие колонию простейших (за исключением половых клеток), все более или менее одинаковы. Характерная особенность Metazoa — наличие в их жизненном цикле сложного индивидуального развития (онтогенеза), в процессе которого из оплодотворенного яйца (а иногда при партеногенезе из неоплодотворенного) образуется взрослый организм. Онтогенез многоклеточных включает дробление яйца на множество клеток (бластомеров) и последующую дифференциацию их на зародышевые листки и зачатки органов. У простейших онтогенез осуществляется в пределах клеточной организации, проявляясь, например, в развитии ресничного аппарата, органелл захвата пищи, двигательных органелл и т. п. Вопрос о происхождении многоклеточных животных. Факт происхождения Metazoa от одноклеточных в настоящее время считается общепризнанным. Но вопрос, каким образом в процессе эволюции шло превращение Protozoa в многоклеточные организмы, до сих пор остается спорным. У ряда простейших, принадлежащих к разным группам, наблюдается известная тенденция к выработке многоклеточного строения. Такую тенденцию можно видеть в приобретении простейшими животными многочисленных, хотя и вполне равноценных, ядер (лучевики, опалины и др.). Иногда умножение числа ядер принимает известный упорядоченный характер и сопровождается умножением других органелл, что наблюдается, например, у отр. Hypermastigina. Как тенденцию к многоклеточное™ можно рассматривать и возникновение ядерного дуализма у инфузорий. Иногда у Protozoa дело доходит даже до формирования настоящих многоклеточных и притом разноклеточных образований, каковы споры Myxosporidia (с. 69). Однако все отмеченные нами до сих пор пути ведут, несомненно, в тупики и не играют роли в эволюции Metazoa. Это тем более вероятно, что громадное большинство перечисленных простейших— паразиты. Более важное значение в разбираемом нами вопросе имеют колониальные простейшие, как, например, Volvox, с его делением клеток колонии на соматические и половые. Основываясь именно на подобных колониях, Геккель (1874) и построил известную гастрейную теорию происхождения Metazoa, которая до сих пор принимается многими зоологами. Геккель утверждал, что отдаленным предком многоклеточных была шаровидная колония простейших. Он опирался на данные эмбриологии, говорящие о том, что в онтогенезе внутренний зародышевый пласт (энтодерма) часто образуется путем впячивания (инвагинации) стенки однослойного зародыша (бластулы), в результате чего получается двухслойная стадия (гаструла). Геккель полагал, что и в процессе эволюции (филогенеза) одна половина шаровидного бластулообразного организма впятилась в другую, и таким образом возникла первичная кишечная полость, открывающаяся наружу ротовым отверстием. Такой гипотетический двухслойный организм плавал с помощью жгутиков, размножался половым путем и стал предком всех многоклеточных животных. Геккель назвал его «гастреей». Принятие гастрейной теории подводит нас непосредственно к низшим двухслойным Metazoa (гидра). Другую, пользующуюся широким признанием теорию высказал И. И. Мечников (1886). Изучая онтогенез низших Metazoa, он заметил, что их энтодерма образуется не посредством впячивания, а путем внедрения отдельных клеток в полость бластулы — бластоцель, где они и образуют сначала рыхлый, а затем плотный зачаток внутреннего пласта. Лишь впоследствии в этой плотной клеточной массе появляется кишечная (гастральная) полость, и еще позже прорывается первичный рот (бластопор). Этот процесс образования энтодермы Мечников считал более первичным, чем впячивание. Стадия с плотным зачатком энтодермы имеется в развитии губок (паренхимула) и кишечпополостных. Мечников, так же как Геккель, считал, что Metazoa развились из колоний жгутиконосцев. Однако образование внутреннего пласта в филогенезе произошло не путем впячивания, а вследствие заползания отдельных клеток стенки колонии в ее внутреннюю полость. Этот процесс был связан с внутриклеточным пищеварением (фагоцитозом), которое осуществлялось ушедшими в полость колонии клетками. Поэтому внутренний слой клеток был назван Мечниковым фагоцитобластом. Эту филогенетическую стадию Мечников назвал «фагоцителлой». В пользу теории Геккеля говорит широко распространенное развитие энтодермы путем впячивания. Против нее и за Мечникова — то обстоятельство, что именно у низших Metazoa гаструляция идет не впячиванием, а иммиграцией клеток внутрь бластоцеля. Серьезным преимуществом теории Мечникова является также и то, что процесс внедрения клеток внутрь полости шаровидной колонии получает и с физиологической точки зрения правдоподобное объяснение. Образование у предков Metazoa двух клеточных пластов сопровождалось специализацией их клеток в разных направлениях, т. е. превращением колонии жгутиконосцев в целостный многоклеточный организм. Наружный слой клеток сохранил двигательную и чувствительную функции, тогда как внутренний — пищеварительную и половую. При этом индивидуальность отдельных клеточных элементов оказалась подавленной. Закономерности превращения колонии простейших, т. е. объединения еще слабо связанных физиологически клеток-жгутиконосцев в многоклеточную особь — индивид более высокого, чем простейшие, уровня — были выяснены А. А. Захватанным (1949). Он считал также, что процесс дробления яйца у Metazoa развивался на основе палинтомии — особой формы бесполого размножения, свойственной некоторым Protozoa (с. 42). По мнению А. А. Захваткина, первичные многоклеточные животные не имели ничего общего ни с гастреей Геккеля, ни с фагоцителлой Мечникова. Онтогенетические стадии Metazoa — бластула и гаструла — рекапитулируют не организацию взрослых предков многоклеточных, а только их свободноплавающую личинку, служащую исключительно для расселения вида. Что же касается взрослых стадий первобытных Metazoa, то, по Захваткину, это были неподвижно прикрепленные колониальные организмы, внешне напоминавшие современных губок и гидроидных полипов. Однако трудно себе представить, что такой важный прогрессивный шаг в эволюции, как переход от одноклеточного состояния к многоклеточному, мог совершиться у пассивных неподвижных животных. Все рассмотренные теории сходны в том, что принимают за отдаленных предков многоклеточных животных колонии простейших. Существует, однако, гипотеза, предполагающая, что в процессе эволюции одиночные простейшие целиком превращались в многоклеточные существа. Эта идея, высказанная впервые Иерингом, в настоящее время особенно пропагандируется известным югославским зоологом Иованом Хаджи. По его мнению, многоклеточные произошли от многоядерных инфузорий. Последние, как мы уже знаем, обладают довольно сложным строением. Их цитоплазма представлена двумя слоями — периферической эктоплазмой и центральной эндоплазмой, в которой совершается внутриклеточное пищеварение. В эктоплазме залегают трихоцисты, мионемы и другие характерные клеточные органеллы. Инфузории имеют клеточный рот, глотку, а также пульсирующие вакуоли с их приводящими канальцами. Все эти различно дифференцированные части одноклеточного организма— органеллы — Хаджи считает гомологичными органам многоклеточного животного, несущим сходные с ними функции. Так, он думает, что кожные покровы Metazoa произошли из эктоплазмы, их кишечник — из эндоплазмы, мышцы — из мионем, органы выделения — из пульсирующих вакуолей, наконец, их половые железы — из микронуклеуса инфузорий. Предполагается далее, что акт спаривания самца и самки у многоклеточных животных развился из конъюгации двух инфузорий, а процесс оплодотворения яйца у Metazoa — из процесса слияния двух половых ядер конъюгирующих особей, наконец, все тело инфузории приравнивается телу целого многоклеточного организма. Переход от одноклеточного состояния к многоклеточному, якобы, совершился в теле инфузории сразу путем образования клеточных границ вокруг отдельных ядер и прилегающих к ним участков цитоплазмы. Этот предполагаемый процесс называется целлюляризацией (от лат. cellula — клетка), а сама гипотеза — теорией цедлюляризации. Эта концепция, имеющая своих защитников среди биологов разных стран, не выдерживает критики прежде всего потому, что принцип, лежащий в ее основе, порочен, так как не согласуется с основными положениями клеточной теории. В самом деле, теория целлюляризации приравнивает части отдельной клетки тканям и органам Metazoa, т. е. многоклеточным образованиям. Теория целлюляризации Хаджи не имеет никакой опоры и в эмбриологии низших многоклеточных. Классификация многоклеточных. В современной зоологии явно ощущается необходимость в классификации самых высоких систематических категорий — типов. Такая классификация типов отражает их родственные отношения, т. е. строится на основе наиболее существенных общих черт строения, обусловленных общностью происхождения. Из сказанного ясно, что всех животных прежде всего естественно делить на подцарства одноклеточных (Protozoa) и многоклеточных (Metazoa). Все многоклеточные могут быть разделены на три больших надраздела: Phagocytellozoa, Parazoa и Eumetazoa. К Phagocytellozoa относится лишь один тип — Placozoa с двумя видами одного рода Trichoplax (с. 98). Эти крайне своеобразные, лишь за последние годы изученные организмы, которые ранее принимали за личинок кишечпополостных, обладают исключительно примитивной организацией, сближающей их с гипотетическим предком многоклеточных — «фагоцителлой» Мечникова. К Parazoa из современных животных относится лишь один тип губок (Spongia). Губки характеризуются отсутствием хорошо дифференцированных тканей, отсутствием нервной системы и сильно выраженной способностью разных типов клеток превращаться друг в друга. Эти черты указывают на большую примитивность организации Parazoa. Однако самое существенное отличие заключается в особой судьбе их зародышевых листков. У всех Eumetazoa эктодерма занимает поверхностное положение и во время онтогенеза из нее формируются кожные покровы, нервная система (обычно погружающаяся внутрь тела) и органы чувств, тогда как энтодерма дает кишечник и органы, с ним связанные. У Parazoa, напротив, эктодерма погружается внутрь тела и превращается в слой жгутиковых воротничковых клеток жгутиковых камер и каналов, а энтодерма оказывается на поверхности тела и дает покровный слой тела. Parazoa, таким образом, являются животными, как бы вывернутыми наизнанку. Eumetazoa объединяют основную массу многоклеточных, включающую много типов. Все Eumetazoa характеризуются дифференцированными тканями, наличием настоящей нервной системы, резко выраженной индивидуальностью отдельных особей. Eumetazoa распадаются на два раздела — лучистых, или двухслойных (Radiata, s. Diploblastica), и билатеральных, или трехслойных (Bilateria, s. Triploblastica). Лучистые характеризуются наличием нескольких плоскостей симметрии и радиальным расположением органов вокруг главной оси тела (с. 114). Кроме того, при их онтогенезе образуются лишь два отчетливо выраженных пласта: эктодерма и энтодерма, тогда как третий зародышевый листок — мезодерма — находится в зачаточном состоянии. К лучистым относятся два типа: кишечнополостные (Coelenterata) и гребневики (Ctenophora). Bilateria обладают одной плоскостью симметрии, по обе стороны которой располагаются в парном числе различные органы. Двусторонняя симметрия может нарушаться, и животные становятся асимметричными (брюхоногие моллюски) или радиальными (иглокожие). Однако все эти изменения симметрии носят вторичный характер и развиваются как в филогенезе, так и в онтогенезе на основе первоначальной двусторонней симметрии. Помимо эктодермы и эндотермы у Bilateria всегда есть ясно выраженный третий зародышевый листок (мезодерма), за счет которого в онтогенезе развивается значительная часть внутренних органов. В основе дальнейшей классификации типов, принадлежащих к Bilateria, лежит понятие о полости тела, которая у многих трехслойных животных обладает разными характерными особенностями. Полостью тела называют пространство между стенкой тела (состоящей из кожных покровов и прилегающей к ним мускулатуры) и кишечником. У низших Bilateria (именно у плоских червей и немертин) полость тела отсутствует, так как это пространство занято соединительной тканью паренхимы. У других билатеральных животных полость тела выражена, заполнена жидкостью, омывающей внутренние органы и играющей важную физиологическую роль, так как она является посредником в распределении по телу кислорода, питательных веществ и в выведении конечных, продуктов обмена веществ. Кроме того, она, как и целом, выполняет опорную функцию (см. ниже). Эта так называемая первичная полость тела характерна только для первичнополостных червей (Nemathelminthes), а также скребней (Acanthocephala). У нее нет собственных клеточных стенок. У всех высших Bilateria (например, у типа Annelida) имеется вторичная полость тела, или целом. Морфологически целом отличается от первичной полости тела наличием собственных клеточных стенок, которые в онтогенезе всегда формируются за счет третьего зародышевого листка — мезодермы. Стенки, ограничивающие целом, представляют собой однослойный эпителий, называемый целомическим или перитонеальпым эпителием. Этот эпителий одевает внутреннюю поверхность стенки тела, прилегает к кишечнику и ко всем внутренним органам. За его счет образуются особые каналы (целомодукты), сообщающие полость целома с внешней средой. Таким образом, целом представляет собой не просто пространство между внутренними органами, но вполне оформленный орган. В целоме обычно происходит рост и созревание половых клеток. Целомическая жидкость нередко играет существенную роль в процессах дыхания и выделения. Наконец, очень важно опорное значение целома. При сокращении мышц стенок тела давление передается на целомическую жидкость, которая вследствие своей несжимаемости делает тело животного упругим, т. е. играет роль «гидроскелета». По отсутствию или наличию целома раздел Bilateria делится на два подраздела: нецеломических животных (Acoelomata или Scolecida) и целомических животных (Coelomata). К первым относятся плоские черви (Platheltninthes), первичнополостные черви (Nemathelminthes), скребни (Acathocephala) и немертины (Nemertini), ко вторым — все остальные билатеральные животные. Наконец, Coelomata распадаются на две большие группы — первичноротые (Protostomia) и вторичноротые (Deuterostomia), которые различаются главным образом особенностями эмбрионального развития. У Protostomia первичный рот (бластопор) зародыша (именно гаструлы) переходит в рот взрослого животного или же дефинитивный рот образуется на месте первичного рта. Мезодерма формируется, как правило, телобластическим способом, т. е. из пары специальных клеток зародыша (см. развитие кольчатых червей — с. 261). К первичноротым относятся типы кольчатых червей (Annelida), моллюсков (Mollusca), членистоногих (Arthropoda) и онихофор (Onychophora). Существует, однако, и другая точка зрения, согласно которой к Protostomia наряду с перечисленными группами относятся все низшие двусторонне-симметричные животные (Acoelomata). Это объясняется тем, что Гроббеп (1908), впервые обосновавший разделение целомических животных на первично - и вторичноротых, рассматривал низших червей как утративших целом потомков вторичнополостных животных. На этом основании он и отнес их к первичноротым. С тех пор включение низших Bilateria в группу Protostomia получило широкое распространение. Мы, однако, не можем согласиться с мнением, что предками Acoelomata были целомические животные. Отнесение низших Bilateria к первичноротым можно оправдать, признав только независимое происхождение обеих эволюционных ветвей (Protostomia и Deuterostomia) непосредственно от предков, стоящих на уровне кишечнополостных, что представляется недостаточно обоснованным. Deuterostomia — это вторичнополостные животные, у которых на месте бластопора образуется заднепроходное отверстие взрослого животного, дефинитивный рот закладывается позднее и независимо от первичного рта личинки, мезодерма формируется путем выпячивания боковых стенок кишечника, т. е. энтсроцельным способом. Ко вторичноротым принадлежат типы иглокожих (Echinodermata), полухордовых (Hemicordata) и хордовых (Chordata). У высших групп первичноротых (членистоногие) и вторичноротых (позвоночные) указанные особенности эмбрионального развития могут вторично видоизменяться. Первичноротые и вторичноротые охватывают подавляющее большинство целомических животных. Однако существуют некоторые типы, организация, характер эмбрионального развития которых не укладываются полностью в рамки этих двух больших групп, — это щетинкочелюстные (Chaetognatha), щупальцевые (Tentaculata) и погонофоры (Pogonophora). Эволюция этих типов шла, вероятно, независимо от вторичноротых и первичноротых. НАДРАЗДЕЛ PHAGOCYTELLOZOA Наиболее примитивные многоклеточные животные, сохранившие основные особенности строения первобытных Metazoa. К ним относится один тип. ТИП ПЛАСТИНЧАТЫЕ ЖИВОТНЫЕ (PLACOZOA) Тело Placozoa слагается из наружного эпителиобразного слоя жгутиковых клеток и внутренней массы амебообразных клеток — паренхимы. До сих пор известны лишь два представителя этого типа: Trichoplax adhaerens и Trichoplax reptans, оба описаны еще в конце прошлого века, но до недавнего времени ошибочно принимались за аберрантных личинок кишечнополостных. Только в 1971 г. удалось наблюдать половое размножение трихоплакса и доказать, что это нормальный взрослый организм. Trichoplax— морское, ползающее по поверхности водорослей существо. Тело его в виде очень тонкой сероватой пластиночки, не более 4 мм в поперечнике. Животное медленно скользит на своей нижней поверхности, прилегающей к субстрату, и при этом меняет очертания. Направление движения тоже легко меняется; тело не имеет постоянных переднего и заднего концов и определенной симметрии. Ползущий трихоплакс напоминает гигантскую амебу (рис. 73,Л). Строение и физиология. Нижний, прилегающий к субстрату клеточный слой, условно называющийся «брюшным», состоит из высоких клеток, несущих каждая по одному жгуту (рис. 73,Б). Верхний, или «спинной», клеточный слой обладает признаками так называемого погруженного эпителия (см. с. 149). Каждая из его клеток состоит из лежащей на поверхности цитоплазматической пластинки с одним жгутом и погруженного в паренхиму клеточного тела с ядром. Некоторые из этих клеток содержат довольно крупную жировую (липидную) вакуоль. Характерно, что покровный слой клеток ничем не отграничен от паренхимы (основная, или базальная, мембрана отсутствует). Все внутреннее пространство животного заполнено массой очень разнообразных амебоидных клеток, способных перемещаться посредством псевдоподий. Многие клетки брюшного эпителия, по-видимому, утрачивают свой жгут, погружаются внутрь тела и превращаются в амебообразные элементы. То же происходит и с некоторыми клетками спинного эпителия, хотя и в меньшей степени. Среди клеточных элементов паренхимы особенно выделяются крупные и веретеновидные клетки, которые тянутся от брюшной стороны тела к спинной и обладают сократительной функцией. Трихоплакс может накрывать телом скопления пищевых частиц (например, жгутиконосцев Cryptomonas), изливать на них пищеварительный секрет клеток брюшного эпителия и возможно всасывать затем своей поверхностью продукты наружного пищеварения. Вместе с тем наличие в некоторых амебоцитах паренхимы пищеварительных вакуолей говорит о том, что питание осуществляется также посредством фагоцитоза. Механизм «амебоидного» движения у Trichoplax, который совершенно лишен мускульных элементов, остается загадочным. Можно только предполагать, что веретеновидные клетки паренхимы с их митохондриальным комплексом способны сокращаться и что это имеет прямое отношение к движению животного. Однако вряд ли только этим можно объяснить все изменения формы тела. При половом размножении в паренхиме трихоплакса появляются гоноциты, сначала связанные с брюшным слоем жгутиковых клеток и потом превращающиеся в яйца, богатые желтком. Спермин не были найдены. Однако, судя по первичной оболочке, появляющейся вокруг каждого зрелого яйца, происходит оплодотворение, после чего яйцо испытывает полное равномерное дробление, напоминающее по некоторым признакам очень примитивное спиральное дробление (рис. 73,В).
|