Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краткий теоретический материал





Основные понятия теории множеств

Понятие множества относится к числу фундаментальных неопределяемых понятий математики. Под понятием множества будем понимать любую определенную совокупность объектов. Объекты, из которых состоит множество, называются элементами множества. Множества обозначаются заглавными латинскими буквами, а их элементы – прописными. Если объект является элементом множества , то используется обозначение: , если же объект не является элементом множества , то используется обозначение: .

Множество, не содержащее элементов, называется пустым и обозначается .

Если множество состоит из элементов , то используется обозначение . В этом случае будем говорить, что множество задано перечислением его элементов.

Обозначения для некоторых, часто используемых, множеств:

 

 

– множество натуральных чисел;

 

 

– множество целых чисел;

– множество вещественных чисел.

Множество можно задавать и с помощью характеристического предиката. Например, множество рациональных чисел можно записать следующим образом:

 

.

 

Два множества и называются равными, если они состоят из одних и тех же элементов и обозначается .

Если каждый элемент множества является также элементом множества , то множество называется подмножеством множества и обозначается :

 

.

 

Приведем ещё одно определение равенства двух множеств и . Два множества и называются равными, если каждое из них являются подмножеством другого:

 

.

 

 







Дата добавления: 2015-04-16; просмотров: 460. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия