Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Краткий теоретический материал





Основные понятия теории множеств

Понятие множества относится к числу фундаментальных неопределяемых понятий математики. Под понятием множества будем понимать любую определенную совокупность объектов. Объекты, из которых состоит множество, называются элементами множества. Множества обозначаются заглавными латинскими буквами, а их элементы – прописными. Если объект является элементом множества , то используется обозначение: , если же объект не является элементом множества , то используется обозначение: .

Множество, не содержащее элементов, называется пустым и обозначается .

Если множество состоит из элементов , то используется обозначение . В этом случае будем говорить, что множество задано перечислением его элементов.

Обозначения для некоторых, часто используемых, множеств:

 

 

– множество натуральных чисел;

 

 

– множество целых чисел;

– множество вещественных чисел.

Множество можно задавать и с помощью характеристического предиката. Например, множество рациональных чисел можно записать следующим образом:

 

.

 

Два множества и называются равными, если они состоят из одних и тех же элементов и обозначается .

Если каждый элемент множества является также элементом множества , то множество называется подмножеством множества и обозначается :

 

.

 

Приведем ещё одно определение равенства двух множеств и . Два множества и называются равными, если каждое из них являются подмножеством другого:

 

.

 

 







Дата добавления: 2015-04-16; просмотров: 460. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия