Импликацией двух высказываний называется новое высказывание, которое ложно тогда и только тогда, когда первое высказывание истинно, а второе – ложно
Импликация обозначается или , читается «Если А, то В». Таблица истинности импликации выглядит так:
Пример 6: Чтобы запомнить правило нахождения значения истинности импликации, удобно воспользоваться следующими высказываниями: «Дождь идет», «Асфальт мокрый», «Дождь не идет», «Асфальт сухой». 1) = «Если дождь идет, то асфальт мокрый» = 1; 2) = «Если дождь идет, то асфальт сухой» = 0; 3) = «Если дождь не идет, то асфальт мокрый» = 1 (прошла поливальная машина или растаял снег); 4) = «Если дождь не идет, то асфальт сухой» = 1. Принятое определение импликации соответствует употреблению союза «если…, то…» не только в математике, но и в обыденной, повседневной речи. Так, например, обращение приятеля «Если будет хорошая погода, то я приду к тебе в гости» вы расцените как ложь в том и только в том случае, если погода будет хорошая, а приятель к вам в гости не придет. Вместе с тем определение импликации вынуждает считать истинными высказываниями такие предложения, как «Если 2×2 = 4, то Москва – столица России» или «Если 2×2 = 5, то существуют ведьмы». Эти предложения, вероятно, кажутся бессмысленными. Дело в том, что мы привыкли соединять союзом «если…, то…» (так же, как и другими союзами) предложения, связанные по смыслу. Но определениями логических операций смысл составляющих высказываний никак не учитывается; они рассматриваются как объекты, обладающие единственным свойством – быть истинными либо ложными. Поэтому не стоит смущаться «бессмысленностью» некоторых составных высказываний, их смысл не входит в предмет нашего рассмотрения. 5. Эквиваленция (логическая равносильность).
|