Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Детерминированная статическая модель без дефицита. Данная модель характеризуется постоянным во времени спросом, мгновенным пополнением запаса и отсутствием дефицита (т.е





Данная модель характеризуется постоянным во времени спросом, мгновенным пополнением запаса и отсутствием дефицита (т.е. нехватка товара не допускается, штраф при неудовлетворенном спросе бесконечно велик). Такую модель можно применять в следующих типичных ситуациях:

а) использование осветительных ламп в здании;

б) использование канцелярских товаров крупной фирмой;

в) использование таких промышленных изделий, как гайки, болты и т.п.;

г) потребление основных продуктов питания (например, хлеба и молока).

Предположим, что интенсивность спроса (в единицу времени) равна b. Пусть q – размер заказа, ts – интервал времени между поступлениями заказов, R – полный спрос за все время планирования T. В данной модели наивысшего уровня запас достигает в момент поставки заказа размером q и падает до нуля спустя время ts (рис.2.5.1).

 

q q q q q

 

ts ts ts ts ts

Т

Рис. 2.5.1. Кривая запасов. Модель без дефицита.

Тогда q /2 – средний запас в течение ts, b = R/Т, ts = q/b.

Чем меньше размер заказа q, тем чаще нужно размещать новые заказы. Однако при этом средний уровень запаса будет уменьшаться. С другой стороны, с увеличением размера заказов уровень запаса повышается, но заказы размещаются реже. Так как затраты зависят от частоты размещения заказа и объема хранимого запаса, то величина q выбирается из условия обеспечения сбалансированности между двумя видами затрат (минимизации их суммы).

Пусть с1 – затраты на оформление заказа, имеющие место всякий раз при его размещении (при покупке или производстве), с2 – затраты на хранение единицы продукции в единицу времени, тогда суммарные затраты в единицу времени можно представить как функцию от q в виде:

с(q) = затраты на оформление заказа в единицу времени + затраты на хранение запасов в единицу времени =

= с1/ ts + с2 q/2 = с1b/q + с2q /2. (2.5.1)

В точке минимума функции с(q) ее производная равна нулю:

c′(q) = –с1b/q2 + с2/2 = 0,

откуда находим оптимальное значение размера заказа

q* = Ö2 с1b/ с2. (2.5.2)

Полученное выражение обычно называют формулой экономичного размера заказа Уилсона. Подставляя q* в (2.5.1) определим минимальные ожидаемые суммарные накладные расходы:

С* = Тс(q*) =ТÖ2с1с2b. (2.5.3)

Время расхода оптимальной партии равно

ts* = q* /b = Ö2 с1/(b с2). (2.5.4)

Пример 2.5.1. Ежедневный спрос на некоторый товар составляет 100 ед. Затраты на размещение каждого заказа постоянны и равны 1000 руб. Ежедневные затраты на хранение единицы запаса составляют 0.2 руб. Требуется определить оптимальный размер партии, оптимальную продолжительность цикла поставок и вычислить минимум общих ожидаемых годовых затрат. Подстановка исходных данных примера в уравнения (2.5.2)-(2.5.4) нам дает

q* = Ö2´100´1000/0.2 = 1000 ед.

С* =365Ö2´100´1000´0.2 = 73000 руб.

ts* = Ö2´1000/(100´0.2) = 10 дней.

Для большинства реальных ситуаций существует (положительный) срок выполнения заказа от момента размещения до его действительной поставки. Тогда необходимо определять точку возобновления заказа, как правило, через уровень запаса, соответствующий моменту возобновления заказа. На практике это реализуется путем непрерывного контроля уровня запаса до момента достижения очередной точки возобновления заказа.

Пример 2.5.2. Предположим в условиях примера 2.5.1, что срок выполнения заказа L равен 12 дням. Так как оптимальная продолжительность цикла составляет 10 дней, возобновление заказа в условиях налаженного производства происходит, когда уровень запаса достаточен для удовлетворения спроса на 12 – 10 = 2 дня. Таким образом, заказы размером q*=1000 должны делаться регулярно при достижении уровня запаса 2´100=200ед. После стабилизации системы можно считать, что срок выполнения заказа равен L – ts* при L > ts*. В описанных условиях в любой момент времени имеется более одного размещенного, но еще не выполненного заказа, и «эффективный» срок выполнения заказа принят равным 2 дням.







Дата добавления: 2015-04-16; просмотров: 523. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия