Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Простая вероятностная модель





При построении этой модели штрафы, связанные с дефицитом запасов, считаются конечными, и данная модель имеет следующие особенности:

1. Спрос и пополнение запасов оцениваются на основе опытных данных.

2. Рассматривается производство и потребление дискретного продукта.

3. Распределения по времени спроса и заказов на пополнение дискретные и неравномерные.

4. Известно и постоянно время выполнения заказов.

Здесь учитываются только расходы на приобретение запасных деталей, которые могут оказаться лишними, и убытки, возникающие при их нехватке.

Пусть спрос r является случайной величиной и задан закон (ряд) распределения j(r). Тогда запасу в s деталей будут соответствовать следующие затраты: (s –r)с2, если r £ s, т.е. запас оказался чрезмерным, и (r – s)с3, если s < r, т.е. запасных деталей не хватило. Тогда среднее значение суммарных затрат (математическое ожидание) имеет вид:

C(s) = с2 s – r) j(r) + с3 r – s)j(r). (2.5.11)

Задача управления запасами при вероятностном спросе состоит в отыскании такого запаса s*, при котором математическое ожидание суммарных затрат (2.5.11) принимает минимальное значение.

Опуская доказательство, получаем, что значение s* должно удовлетворять неравенствам

P(s* – 1) < с3 /(с2 + с3) < P(s*), (2.5.12)

где P(s) = j(r) – эмпирическая функция распределения спроса (вероятность того, что спрос r £ s).

Пример 2.5.4. Пусть стоимость одной детали, если ее заказывать заранее, составляет 100 руб. Отсутствие этой детали в запасе при поломке приводит к простою оборудования и срочный заказ детали обходится в 200 руб. Опытные данные о частоте выхода этой детали из строя приведены в табл. 2.5.1.

Таблица 2.5.1.

Потребовалось запасных деталей (r)             Итого
Сколько случаев потребовало данное число деталей              
Эмпирическая вероятность j(r) 0.10 0.20 0.25 0.20 0.15 0.10  

Эмпирическая вероятность j(r) – это доля случаев, когда спрос равен r. Подсчитаем значение с3 /(с2 + с3) = 200/(100 + 200) = 0.67.

Оптимальное решение получается в результате построения эмпирической функции распределения спроса, которая показывает долю случаев, когда спрос меньше либо равен r. (табл. 2.5.2).

 

 

Таблица 2.5.2

s            
P(s) 0.10 0.30 0.55 0.75 0.90 1.00

Так как P(2) = 0.55 < 0.67 < 0.75 = P(3), то оптимальное значение s*= 3.

Полученным аналитическим решением можно воспользоваться для оценки потерь, возникающих при недостаточных запасах. Предположим, что нам неизвестна зависимость штрафа от размера дефицита, а уровень запасов, который предприниматель стремится поддерживать, равен трем деталям. Для какого штрафа этот уровень запасов будет оптимальным? Подставляя в (2.5.12) s* = 3, получим

P(2) < с3 /(с2 + с3) < P(3),

0.55 < с3 /(100 + с3) < 0.75.

Определим минимальное значение с3:

с3/(100 + с3) = 0.55, откуда с3 = 122.

Определим максимальное значение с3:

с3 /(100 + с3) = 0.75, откуда с3 = 300.

Следовательно, предприниматель считает, что размер штрафа за дефицит заключен в пределах от 122 до 300 руб.

Заключение. Общее решение задачи выбора оптимальных размеров и сроков размещения заказов на запасаемую продукцию нельзя получить на основе одной модели. Мы рассмотрели некоторые простые частные случаи. В реальных условиях потери от дефицита обычно наиболее сложно оценить, так как они могут быть обусловлены нематериальными факторами, например, ухудшением репутации. С другой стороны, хотя оценку затрат на оформление заказа получить нетрудно, включение в модель этих расходов существенно усложняет математическое описание задачи.

Известные модели управления запасами редко точно описывают реальную систему. Поэтому решения, получаемые на основе моделей этого класса, следует рассматривать скорее как принципиальные выводы, а не конкретные рекомендации. В ряде сложных случаев приходится прибегать к методам динамического программирования и даже имитационного моделирования системы, чтобы получить достаточно надежное решение.







Дата добавления: 2015-04-16; просмотров: 508. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия