Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Простая вероятностная модель





При построении этой модели штрафы, связанные с дефицитом запасов, считаются конечными, и данная модель имеет следующие особенности:

1. Спрос и пополнение запасов оцениваются на основе опытных данных.

2. Рассматривается производство и потребление дискретного продукта.

3. Распределения по времени спроса и заказов на пополнение дискретные и неравномерные.

4. Известно и постоянно время выполнения заказов.

Здесь учитываются только расходы на приобретение запасных деталей, которые могут оказаться лишними, и убытки, возникающие при их нехватке.

Пусть спрос r является случайной величиной и задан закон (ряд) распределения j(r). Тогда запасу в s деталей будут соответствовать следующие затраты: (s –r)с2, если r £ s, т.е. запас оказался чрезмерным, и (r – s)с3, если s < r, т.е. запасных деталей не хватило. Тогда среднее значение суммарных затрат (математическое ожидание) имеет вид:

C(s) = с2 s – r) j(r) + с3 r – s)j(r). (2.5.11)

Задача управления запасами при вероятностном спросе состоит в отыскании такого запаса s*, при котором математическое ожидание суммарных затрат (2.5.11) принимает минимальное значение.

Опуская доказательство, получаем, что значение s* должно удовлетворять неравенствам

P(s* – 1) < с3 /(с2 + с3) < P(s*), (2.5.12)

где P(s) = j(r) – эмпирическая функция распределения спроса (вероятность того, что спрос r £ s).

Пример 2.5.4. Пусть стоимость одной детали, если ее заказывать заранее, составляет 100 руб. Отсутствие этой детали в запасе при поломке приводит к простою оборудования и срочный заказ детали обходится в 200 руб. Опытные данные о частоте выхода этой детали из строя приведены в табл. 2.5.1.

Таблица 2.5.1.

Потребовалось запасных деталей (r)             Итого
Сколько случаев потребовало данное число деталей              
Эмпирическая вероятность j(r) 0.10 0.20 0.25 0.20 0.15 0.10  

Эмпирическая вероятность j(r) – это доля случаев, когда спрос равен r. Подсчитаем значение с3 /(с2 + с3) = 200/(100 + 200) = 0.67.

Оптимальное решение получается в результате построения эмпирической функции распределения спроса, которая показывает долю случаев, когда спрос меньше либо равен r. (табл. 2.5.2).

 

 

Таблица 2.5.2

s            
P(s) 0.10 0.30 0.55 0.75 0.90 1.00

Так как P(2) = 0.55 < 0.67 < 0.75 = P(3), то оптимальное значение s*= 3.

Полученным аналитическим решением можно воспользоваться для оценки потерь, возникающих при недостаточных запасах. Предположим, что нам неизвестна зависимость штрафа от размера дефицита, а уровень запасов, который предприниматель стремится поддерживать, равен трем деталям. Для какого штрафа этот уровень запасов будет оптимальным? Подставляя в (2.5.12) s* = 3, получим

P(2) < с3 /(с2 + с3) < P(3),

0.55 < с3 /(100 + с3) < 0.75.

Определим минимальное значение с3:

с3/(100 + с3) = 0.55, откуда с3 = 122.

Определим максимальное значение с3:

с3 /(100 + с3) = 0.75, откуда с3 = 300.

Следовательно, предприниматель считает, что размер штрафа за дефицит заключен в пределах от 122 до 300 руб.

Заключение. Общее решение задачи выбора оптимальных размеров и сроков размещения заказов на запасаемую продукцию нельзя получить на основе одной модели. Мы рассмотрели некоторые простые частные случаи. В реальных условиях потери от дефицита обычно наиболее сложно оценить, так как они могут быть обусловлены нематериальными факторами, например, ухудшением репутации. С другой стороны, хотя оценку затрат на оформление заказа получить нетрудно, включение в модель этих расходов существенно усложняет математическое описание задачи.

Известные модели управления запасами редко точно описывают реальную систему. Поэтому решения, получаемые на основе моделей этого класса, следует рассматривать скорее как принципиальные выводы, а не конкретные рекомендации. В ряде сложных случаев приходится прибегать к методам динамического программирования и даже имитационного моделирования системы, чтобы получить достаточно надежное решение.







Дата добавления: 2015-04-16; просмотров: 508. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия