Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Численные ошибки использованных для вычисления данных





Степень много- члена Аппроксимация dT/dz при z =2 Порядок остаточного члена Численное значение (dT/dz)z 0 = 0
  1 — Т 0 ) / h h 4,12
  (-Т2 + 1 — 3Т 0 ) / 2 h h2 4,71
  (-2 Т 3 - 9T2 + 18 Т 1 - 11 T 0)/6h h3 5,25
4 (-3T 4 + 16Т3 - 36Т2+ 48Т 1 - 25T 0 )/12h h4 3,47

Здесь аппроксимация градиента d/Т/dz и «порядок ошибки» маскируют значительно более важный источник ошибки при вычислении dT/dz, а именно случайную ошибку, порождаемую измерением.

Предположим, что все величины Тi в табл. 12.4 обладают одинаковым стандартным отклонением 0,01 (1% от Т0) или дисперсией в
10-4. Тогда для многочлена четвертого порядка

при измерениях: T o =- 1,000; Т 1= - 0,588; Т 2 =- 0,295; Т 3 =- 0,259; T 4=-0,305; h = 0,1.
Тогда , что составляет около 16% от .

Оценивание методом наименьших квадратов. Если наблюдения Y
для откликов модели представляют собой непрерывные функции
времени в интервале от t = 0 до t = ti то МНК требует минимизировать величину

,

 

где Г — ковариационная матрица;

Ф — проинтегрированное по времени значение квадрата ошибки.
Если наблюдения производились в дискретные моменты времени t i,
i= 1, 2,..., n, то, согласно критерию Маркова, следует минимизировать величину

.

Если матрица Г является диагональной, то Ф соответствует критерию «взвешенных наименьших квадратов». Если же Г = получается критерий «обыкновенных наименьших квадратов».

Величина ψ в общей форме

ψ (α,у0,ti) = Y(ti) - ε(ti),

ε(ti) = Y(ti) - ψ (ti).

т.е.

Для минимизации дифференцируем функцию Ф по у0 и α;.

Приравниваем ее нулю

Подобную систему уравнений можно получить и для непрерывных данных, заменяя суммы по дисперсионным значениям на интегралы по времени. Для получения оценки точности и необходимо сделать
некоторое предположение относительно распределения ненаблюдаемых ошибок, например, постулировать нормальное совместное распределение.

Чтобы получить оценки точности , решение модели необходимо приближенно представить в виде линейной функции параметров, разлагая это решение в ряд относительно оценок этих
параметров линеаризацией.

Пример. Пусть имеем модель

.


Тогда

.

Дифференцируя

по у0 а затем по α и заменяя в получившихся выражениях у0 и α; на их оценки получим:

Используя функцию Ф следует учитывать:

1) ненаблюдаемая ошибка добавляется к детерминированному отклику специальным образом;

2) в оценках используются одновременно все n откликов;

3) в критерии не входит никакая априорная статистическая
информация, за исключением, быть может, той, которая вводится
с помощью матрицы Г.

 

назад

 

 







Дата добавления: 2015-04-16; просмотров: 462. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия