Подобие физических явлений и его признаки
Теория подобия рассматривает аналогии в моделировании и определяет методику применения этих аналогий в научном и практическом исследовании. Изучение свойств подобных явлений и методы установления подобия составляют содержание теории подобия физических явлений. Каждому изменению состояния системы, происходящему во времени и пространстве, отвечает ряд процессов или один процесс. При протекании процесса меняются значения переменных, характеризующих состояние системы. Система, в которой происходят процессы, состоит из элементов. Их физические характеристики определяют параметры системы. Для описания процессов необходимо ввести систему координат, в которой записывается математическое уравнение, связывающее между собой переменные и параметры системы. Явления будут подобны друг другу, если существует полное соответствие всех геометрических размеров рассматриваемых систем и всех изменяющихся во времени и пространстве переменных. Геометрическое соответствие материальных систем означает, что все пространственные координаты одной системы пропорциональны пространственным координатам второй системы. Математически это условие в декартовых координатах записывается следующим образом:
Index.html где x i, y i, z i, X i, Y i, Z i- координаты сходственных точек рассматриваемых систем; mx my mz - коэффициенты подобия или масштабы. Рис 2.1. Пример Аффинного подобия. Index2.html При неравенстве масштабов по координатным осям, т.е. если, mx ≠ my ≠ mz осуществляется так называемое аффинное подобие. Пример аффинного подобия приведен на рис. 2.1. Частным случаем аффинного подобия является геометрическое подобие, при котором масштабы по осям равны. Пример геометрического подобия приведен на рис. 2.2. Рис 2.2. Пример геометрического подобия. Index3.html При абсолютном подобии явлений требуется, чтобы во все сходственные моменты времени во всех сходственных точках пространства переменные и параметры одной системы были пропорциональны соответствующим параметрам другой системы. В общем виде это условие можно записать следующим образом: где P i, Ri - сходственные переменные и параметры элементов рассматриваемых систем; mi - коэффициенты подобия или масштабы сходственных параметров.
|