Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Многошаговые методы





Вернемся к задаче Коши

y ’ = f (t, y); y (0) = y 0. (3.13)

В предыдущих методах значение yn + 1 зависело только от информации в пре-дыдущей точке tn. Кажется вполне вероятным, что можно добиться большей точности, если использовать информацию о нескольких предыдущих точках tn, tn - 1,…. Именно так и поступают в многошаговых методах [4].

Если проинтегрировать уравнение (3.13) на отрезке [ tn, tn +1], то получим

или

где P (t) – полином, аппроксимирующий f (t, y).

Чтобы построить полином степени N, используем предыдущие решения yn, yn – 1, …. в точках tn,…, tn -1, …, tn - N,.... Мы по-прежнему считаем, что узлы t расположены равномерно с шагом h. В принципе, можно проинтегрировать этот полином явно, что ведет к следующему методу:

(3.14)

В простейшем случае, когда N = 0, полином P – есть константа, равная fn, и (3.14) превращается в обычный метод Эйлера.

Если N = 1, то P – есть линейная функция, проходящая через

точки (tn -1, fn -1)и (tn, fn), т. е.

Интегрируя этот полином от tn до tn - 1, получаем следующий метод:

(3.15)

который является двухшаговым, поскольку использует информацию в двух точках - tn и tn - 1. Аналогично, если N = 2, то P есть квадратичный полином, интерполирующий данные (tn-2, fn-2), (tn-1, fn-1), (tn, fn), а соответствующий метод имеет вид

(3.16)

Если N = 3, то интерполяционный полином является кубическим, а соответствующий метод определяется формулой

(3.17)

Отметим, что метод (3.16) является трехшаговым, а (3.17) – четырехшаговым. Формулы (3.15) – (3.17) известны как методы Адамса –Башфорта. Метод (3.15) имеет второй порядок точности, поэтому его называют методом Адамса – Башфорта второго порядка. Аналогично, методы (3.16) и (3.17) называют соответственно методами Адамса – Башфорта третьего и четвертого порядков.

Этот процесс, в принципе, можно бы продолжить, используя все большее число предыдущих точек, а следовательно, и интерполяционный полином P более высокой степени, и получить Адамса – Башфорта сколь угодно высокого порядка. Однако точность вычислений с увеличением порядка возрастает нелинейно. Чем дальше отстоит предыдущая точка от текущей точки, тем слабее она влияет на точность. Многошаговые методы порождают проблему, которая не возникала при использовании одношаговых методов. Так как в

рассматриваемых методах используется информация о нескольких ранее полученных точках, то в отличие от одношаговых методов они не обладают свойством "самостартования". Поэтому прежде чем применять многошаговый метод, приходится вычислять исходные данные с помощью какого-либо одношагового метода. Часто для этого прибегают к методу Рунге - Кутта.







Дата добавления: 2015-04-16; просмотров: 493. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия