Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Многошаговые методы





Вернемся к задаче Коши

y ’ = f (t, y); y (0) = y 0. (3.13)

В предыдущих методах значение yn + 1 зависело только от информации в пре-дыдущей точке tn. Кажется вполне вероятным, что можно добиться большей точности, если использовать информацию о нескольких предыдущих точках tn, tn - 1,…. Именно так и поступают в многошаговых методах [4].

Если проинтегрировать уравнение (3.13) на отрезке [ tn, tn +1], то получим

или

где P (t) – полином, аппроксимирующий f (t, y).

Чтобы построить полином степени N, используем предыдущие решения yn, yn – 1, …. в точках tn,…, tn -1, …, tn - N,.... Мы по-прежнему считаем, что узлы t расположены равномерно с шагом h. В принципе, можно проинтегрировать этот полином явно, что ведет к следующему методу:

(3.14)

В простейшем случае, когда N = 0, полином P – есть константа, равная fn, и (3.14) превращается в обычный метод Эйлера.

Если N = 1, то P – есть линейная функция, проходящая через

точки (tn -1, fn -1)и (tn, fn), т. е.

Интегрируя этот полином от tn до tn - 1, получаем следующий метод:

(3.15)

который является двухшаговым, поскольку использует информацию в двух точках - tn и tn - 1. Аналогично, если N = 2, то P есть квадратичный полином, интерполирующий данные (tn-2, fn-2), (tn-1, fn-1), (tn, fn), а соответствующий метод имеет вид

(3.16)

Если N = 3, то интерполяционный полином является кубическим, а соответствующий метод определяется формулой

(3.17)

Отметим, что метод (3.16) является трехшаговым, а (3.17) – четырехшаговым. Формулы (3.15) – (3.17) известны как методы Адамса –Башфорта. Метод (3.15) имеет второй порядок точности, поэтому его называют методом Адамса – Башфорта второго порядка. Аналогично, методы (3.16) и (3.17) называют соответственно методами Адамса – Башфорта третьего и четвертого порядков.

Этот процесс, в принципе, можно бы продолжить, используя все большее число предыдущих точек, а следовательно, и интерполяционный полином P более высокой степени, и получить Адамса – Башфорта сколь угодно высокого порядка. Однако точность вычислений с увеличением порядка возрастает нелинейно. Чем дальше отстоит предыдущая точка от текущей точки, тем слабее она влияет на точность. Многошаговые методы порождают проблему, которая не возникала при использовании одношаговых методов. Так как в

рассматриваемых методах используется информация о нескольких ранее полученных точках, то в отличие от одношаговых методов они не обладают свойством "самостартования". Поэтому прежде чем применять многошаговый метод, приходится вычислять исходные данные с помощью какого-либо одношагового метода. Часто для этого прибегают к методу Рунге - Кутта.







Дата добавления: 2015-04-16; просмотров: 493. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия