Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 3.1. Примером может служить задача о траектории





Примером может служить задача о траектории. Предположим, что снаряд выпускается с начальной скоростью V 0 под заданным углом наклона Q0 к поверхности.

Как видно из рис. 3.2 функции x (t) и y (t) обозначают координаты x и у снаряда в момент времени t, а функции и определяют его скорость V (t).

Расстояние x k, на котором упадет снаряд, зависит от целого ряда факторов: массы снаряда, начальной скорости, гравитационных сил и т.д.

Математическая модель этой задачи выводится из второго закона Ньютона:

(3.1)

где m - масса снаряда; F - результирующая действующих на снаряд сил.

На снаряд действуют две силы:

1) cила сопротивления воздуха

(3.2)

где C - коэффициент сопротивления; ρ - плотность воздуха; S - поперечное сечение снаряда;

2) сила гравитации

F 2= - mg, (3.3)

где g - ускорение свободного падения.

Чтобы записать уравнение (3.1) в переменных x и y, заметим, что сила сопротивления F 1действует вдоль оси снаряда, а сила гравитации F 2 только в вертикальном направлении. Поэтому уравнение (3.1) можно записать покоординатно следующим образом:

(3.4)

Используя (3.2), (3.3) и меняя порядок членов, перепишем

уравнения (3.4) в виде:

(3.5)

Для численного решения необходимо преобразовать два уравнения второго порядка (3.5) в систему четырех уравнений первого порядка. Дифференцируя соотношение

(3.6)

Имеем

(3.7)

Подставляя теперь выражения (3.7) в уравнение (3.5) и разрешая последние относительно и , получаем

(3.8)

Уравнения (3.6) вместе с (3.8) составляют систему четырех нелинейных уравнений первого порядка относительно функций x, y, V, θ. Это связанная система нелинейных дифференциальных уравнений, явное решение которых невозможно и возникает необходимость в приближенном численном решении на ЭВМ. Решение системы (3.6), (3.8) должно удовлетворять четырем необходимым начальным условиям.

Считаем, что снаряд выпускается в момент времени t = 0, так что

(x0) = 0,

(y0) = 0.

Другие два начальных условия даются соотношениями

Следовательно, в данном случае рассматривается задача Коши. При заданных характеристиках снаряда и заданном V 0 имеется только один свободный параметр – угол стрельбы Q0. Его изменение будет, очевидно, приводить к изменению траектории.







Дата добавления: 2015-04-16; просмотров: 484. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия