Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 3.1. Примером может служить задача о траектории





Примером может служить задача о траектории. Предположим, что снаряд выпускается с начальной скоростью V 0 под заданным углом наклона Q0 к поверхности.

Как видно из рис. 3.2 функции x (t) и y (t) обозначают координаты x и у снаряда в момент времени t, а функции и определяют его скорость V (t).

Расстояние x k, на котором упадет снаряд, зависит от целого ряда факторов: массы снаряда, начальной скорости, гравитационных сил и т.д.

Математическая модель этой задачи выводится из второго закона Ньютона:

(3.1)

где m - масса снаряда; F - результирующая действующих на снаряд сил.

На снаряд действуют две силы:

1) cила сопротивления воздуха

(3.2)

где C - коэффициент сопротивления; ρ - плотность воздуха; S - поперечное сечение снаряда;

2) сила гравитации

F 2= - mg, (3.3)

где g - ускорение свободного падения.

Чтобы записать уравнение (3.1) в переменных x и y, заметим, что сила сопротивления F 1действует вдоль оси снаряда, а сила гравитации F 2 только в вертикальном направлении. Поэтому уравнение (3.1) можно записать покоординатно следующим образом:

(3.4)

Используя (3.2), (3.3) и меняя порядок членов, перепишем

уравнения (3.4) в виде:

(3.5)

Для численного решения необходимо преобразовать два уравнения второго порядка (3.5) в систему четырех уравнений первого порядка. Дифференцируя соотношение

(3.6)

Имеем

(3.7)

Подставляя теперь выражения (3.7) в уравнение (3.5) и разрешая последние относительно и , получаем

(3.8)

Уравнения (3.6) вместе с (3.8) составляют систему четырех нелинейных уравнений первого порядка относительно функций x, y, V, θ. Это связанная система нелинейных дифференциальных уравнений, явное решение которых невозможно и возникает необходимость в приближенном численном решении на ЭВМ. Решение системы (3.6), (3.8) должно удовлетворять четырем необходимым начальным условиям.

Считаем, что снаряд выпускается в момент времени t = 0, так что

(x0) = 0,

(y0) = 0.

Другие два начальных условия даются соотношениями

Следовательно, в данном случае рассматривается задача Коши. При заданных характеристиках снаряда и заданном V 0 имеется только один свободный параметр – угол стрельбы Q0. Его изменение будет, очевидно, приводить к изменению траектории.







Дата добавления: 2015-04-16; просмотров: 484. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия